-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinding_extractor.py
227 lines (195 loc) · 8.16 KB
/
finding_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from tqdm import tqdm
from typing import List, Dict, Union, Tuple
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from utilities.data import MedicalIOBPOLDataset, BertNENDatasetForTest, KBEntities
from utilities.model import BertNERModel, BiEncoder
from utilities.utils import move_bert_input_to_device
class Recognizer(object):
def __init__(
self,
model: BertNERModel,
tokenizer: AutoTokenizer,
batch_size: int,
device: str,
verbose: bool = False
):
self.model = model
self.tokenizer = tokenizer
self.batch_size = batch_size
self.device = device
self.verbose = verbose
self.label2token = {
0: "positive",
1: "negative"
}
def extract_labeled_spans(self, emrs: List[str]) -> List[Dict[tuple, int]]:
text_set = MedicalIOBPOLDataset(
text_l=emrs,
ner_spans_l=[dict() for _ in range(len(emrs))], # empty labels
tokenizer=self.tokenizer,
return_offsets=True
)
text_loader = DataLoader(
dataset=text_set,
batch_size=self.batch_size,
shuffle=False,
pin_memory=True,
collate_fn=text_set.collate_fn
)
iob_spans_l = list()
self.model = self.model.to(self.device)
self.model.eval()
for X, y, batch_offsets in tqdm(text_loader) if self.verbose else text_loader:
X = move_bert_input_to_device(X, self.device)
with torch.no_grad():
scores = self.model(X)
batch_preds = scores.argmax(dim=-1).detach().cpu().tolist()
for preds, offsets in zip(batch_preds, batch_offsets):
pred_spans_d = dict()
for pred, offset in zip(preds, offsets):
pred_spans_d[tuple(offset)] = pred
iob_spans_l.append(pred_spans_d)
pol_spans_l = [self.iob_spans_to_term_spans(iob_spans) for iob_spans in iob_spans_l]
return pol_spans_l
@staticmethod
def iob_spans_to_term_spans(iob_spans: Dict[tuple, int]) -> Dict[tuple, int]:
term_spans = dict()
term_span = None
pol_label = 0 # 0: positive; 1: negative
for iob_span, label in iob_spans.items():
start, end = iob_span
if label == 0: # O: out
if term_span:
term_spans[tuple(term_span)] = pol_label
term_span = None
elif label % 2 == 1: # B: beginning
if term_span:
term_spans[tuple(term_span)] = pol_label
term_span = [start, end]
pol_label = (label - 1) // 2
else: # I: in
if term_span:
term_span[1] = end
else:
term_span = [start, end]
pol_label = (label - 1) // 2
if (0, 0) in term_spans:
term_spans.pop((0, 0))
return term_spans
@staticmethod
def extract_spans_and_pols(span2pol_l: List[Dict[tuple, int]]):
spans_l = list()
pols_l = list()
for spans_pols in span2pol_l:
spans = list(spans_pols.keys())
pols = list(spans_pols.values())
spans_l.append(spans)
pols_l.append(pols)
return spans_l, pols_l
def get_polname2spans_l(self, span2pol_l: List[Dict[tuple, int]]) -> List[Dict[str, List[tuple]]]:
polname2spans_l = list()
for span2pol in span2pol_l:
polname2spans = {polname: list() for polname in self.label2token.values()}
for span, pol in span2pol.items():
polname = self.label2token[pol]
polname2spans[polname].append(span)
polname2spans_l.append(polname2spans)
return polname2spans_l
def get_polname2terms_l(self, terms_l: List[List[str]], pols_l: List[List[int]]) -> List[Dict[str, List[str]]]:
assert len(terms_l) == len(pols_l)
polname2terms_l = list()
for terms, pols in zip(terms_l, pols_l):
polname2terms = {polname: list() for polname in self.label2token.values()}
assert len(terms) == len(pols)
for term, pol in zip(terms, pols):
polname = self.label2token[pol]
polname2terms[polname].append(term)
polname2terms_l.append(polname2terms)
return polname2terms_l
class Normalizer(object):
def __init__(
self,
model: BiEncoder,
tokenizer: AutoTokenizer,
entity_embeddings: torch.FloatTensor,
cui2name: Dict[str, str],
device: str,
emr_batch_size: int = 1,
cui_batch_size: int = 16,
verbose: bool = False
):
self.model = model
self.tokenizer = tokenizer
self.entity_embeddings = entity_embeddings
self.cui2name = cui2name
self.device = device
self.emr_batch_size = emr_batch_size
self.cui_batch_size = cui_batch_size
self.verbose = verbose
def normalize_term_spans(self, emrs: List[str], spans_l: List[List[tuple]], mode: str) -> List[List[str]]:
assert len(emrs) == len(spans_l)
if mode not in ["umls", "lower"]:
raise ValueError("mode should be 'umls' or 'lower'")
terms_l = list()
if mode == "lower":
for emr, spans in zip(emrs, spans_l):
terms = list()
for s, e in spans:
term = emr[s:e].lower()
terms.append(term)
terms_l.append(terms)
elif mode == "umls":
text_set = BertNENDatasetForTest(
emrs=emrs,
ner_spans_l=spans_l,
cui2name=self.cui2name,
cui_batch_size=self.cui_batch_size,
tokenizer=self.tokenizer
)
text_loader = DataLoader(
dataset=text_set,
batch_size=self.emr_batch_size,
shuffle=False,
pin_memory=True,
collate_fn=lambda batch: batch[0]
)
all_y_ents = self.entity_embeddings.to(self.device)
all_cuis = list(self.cui2name.keys())
# start normalizing terms
self.model = self.model.to(self.device)
self.model.eval()
for emr_be, mention_indices_l in tqdm(text_loader) if self.verbose else text_loader:
entities = list()
if mention_indices_l: # if not empty
emr_be = move_bert_input_to_device(emr_be, self.device)
with torch.no_grad():
# encode mentions
y_ments = self.model.encode_mentions(emr_be, mention_indices_l)
assert len(y_ments) == len(mention_indices_l)
# calculate scores
scores = self.model.calc_scores(y_ments, all_y_ents)
# convert to concept (entity)
preds = scores.argmax(dim=-1).cpu().tolist()
for pred in preds:
pred_cui = all_cuis[pred]
pred_ent = self.cui2name[pred_cui]
entities.append(pred_ent)
terms_l.append(entities)
return terms_l
class FindingExtractor(object):
def __init__(
self,
recognizer: Recognizer,
normalizer: Normalizer
):
self.recognizer = recognizer
self.normalizer = normalizer
def extract(self, text_l: List[str], mode: str) -> Tuple[List[List[str]], List[List[int]]]:
# recognize medical spans
span2pol_l = self.recognizer.extract_labeled_spans(text_l)
spans_l, pols_l = self.recognizer.extract_spans_and_pols(span2pol_l)
# normalize (or just lowercase) the terms
terms_l = self.normalizer.normalize_term_spans(text_l, spans_l, mode)
return terms_l, pols_l