This repository has been archived by the owner on Mar 14, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathaggregator.go
252 lines (206 loc) · 4.25 KB
/
aggregator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
package netmap
import (
"sort"
)
type (
// Aggregator can calculate some value across all netmap
// such as median, minimum or maximum.
Aggregator interface {
Add(float64)
Compute() float64
Clear()
}
// Normalizer normalizes weight.
Normalizer interface {
Normalize(w float64) float64
}
meanSumAgg struct {
sum float64
count int
}
meanAgg struct {
mean float64
count int
}
minAgg struct {
min float64
}
maxAgg struct {
max float64
}
meanIQRAgg struct {
k float64
arr []float64
}
reverseMinNorm struct {
min float64
}
maxNorm struct {
max float64
}
sigmoidNorm struct {
scale float64
}
constNorm struct {
value float64
}
// WeightFunc calculates n's weight.
WeightFunc = func(n Node) float64
)
var (
_ Aggregator = (*meanSumAgg)(nil)
_ Aggregator = (*meanAgg)(nil)
_ Aggregator = (*minAgg)(nil)
_ Aggregator = (*maxAgg)(nil)
_ Aggregator = (*meanIQRAgg)(nil)
_ Normalizer = (*reverseMinNorm)(nil)
_ Normalizer = (*maxNorm)(nil)
_ Normalizer = (*sigmoidNorm)(nil)
_ Normalizer = (*constNorm)(nil)
)
// NewMeanSumAgg returns an aggregator which
// computes mean value by keeping total sum.
func NewMeanSumAgg() Aggregator {
return new(meanSumAgg)
}
// NewMeanAgg returns an aggregator which
// computes mean value by recalculating it on
// every addition.
func NewMeanAgg() Aggregator {
return new(meanAgg)
}
// NewMinAgg returns an aggregator which
// computes min value.
func NewMinAgg() Aggregator {
return new(minAgg)
}
// NewMaxAgg returns an aggregator which
// computes max value.
func NewMaxAgg() Aggregator {
return new(maxAgg)
}
// NewMeanIQRAgg returns an aggregator which
// computes mean value of values from IQR interval.
func NewMeanIQRAgg() Aggregator {
return new(meanIQRAgg)
}
// NewReverseMinNorm returns a normalizer which
// normalize values in range of 0.0 to 1.0 to a minimum value.
func NewReverseMinNorm(min float64) Normalizer {
return &reverseMinNorm{min: min}
}
// NewMaxNorm returns a normalizer which
// normalize values in range of 0.0 to 1.0 to a maximum value.
func NewMaxNorm(max float64) Normalizer {
return &maxNorm{max: max}
}
// NewSigmoidNorm returns a normalizer which
// normalize values in range of 0.0 to 1.0 to a scaled sigmoid.
func NewSigmoidNorm(scale float64) Normalizer {
return &sigmoidNorm{scale: scale}
}
// NewConstNorm returns a normalizer which
// returns a constant values
func NewConstNorm(value float64) Normalizer {
return &constNorm{value: value}
}
func (a *meanSumAgg) Add(n float64) {
a.sum += n
a.count++
}
func (a *meanSumAgg) Compute() float64 {
if a.count == 0 {
return 0
}
return a.sum / float64(a.count)
}
func (a *meanSumAgg) Clear() {
a.sum = 0
a.count = 0
}
func (a *meanAgg) Add(n float64) {
c := a.count + 1
a.mean = a.mean*(float64(a.count)/float64(c)) + n/float64(c)
a.count++
}
func (a *meanAgg) Compute() float64 {
return a.mean
}
func (a *meanAgg) Clear() {
a.count = 0
a.mean = 0
}
func (a *minAgg) Add(n float64) {
if a.min == 0 || n < a.min {
a.min = n
}
}
func (a *minAgg) Compute() float64 {
return a.min
}
func (a *minAgg) Clear() {
a.min = 0
}
func (a *maxAgg) Add(n float64) {
if n > a.max {
a.max = n
}
}
func (a *maxAgg) Compute() float64 {
return a.max
}
func (a *maxAgg) Clear() {
a.max = 0
}
func (a *meanIQRAgg) Add(n float64) {
a.arr = append(a.arr, n)
}
func (a *meanIQRAgg) Compute() float64 {
l := len(a.arr)
if l == 0 {
return 0
}
sort.Slice(a.arr, func(i, j int) bool { return a.arr[i] < a.arr[j] })
var min, max float64
if l < 4 {
min, max = a.arr[0], a.arr[l-1]
} else {
start, end := l/4, l*3/4-1
iqr := a.k * (a.arr[end] - a.arr[start])
min, max = a.arr[start]-iqr, a.arr[end]+iqr
}
count := 0
sum := float64(0)
for _, e := range a.arr {
if e >= min && e <= max {
sum += e
count++
}
}
return sum / float64(count)
}
func (a *meanIQRAgg) Clear() {
a.arr = a.arr[:0]
}
func (r *reverseMinNorm) Normalize(w float64) float64 {
if w == 0 {
return 0
}
return r.min / w
}
func (r *maxNorm) Normalize(w float64) float64 {
if r.max == 0 {
return 0
}
return w / r.max
}
func (r *sigmoidNorm) Normalize(w float64) float64 {
if r.scale == 0 {
return 0
}
x := w / r.scale
return x / (1 + x)
}
func (r *constNorm) Normalize(_ float64) float64 {
return r.value
}