-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinfer.py
executable file
·220 lines (177 loc) · 8.55 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import cv2
import toml
import argparse
import numpy as np
import time
import tqdm
import torch
from torch.nn import functional as F
import utils
from utils import CONFIG
import networks
from scipy.ndimage import morphology
def dilate(mask, t=20):
unknown = morphology.distance_transform_edt(mask==0) <= t
return unknown
def transform(image_dict, alpha_pred, thumbnail=False):
if not thumbnail:
h, w = image_dict['alpha_shape']
alpha_pred = alpha_pred[:, 0, ...].data.cpu().numpy()
alpha_pred = np.transpose(alpha_pred, (1,2,0))
alpha_pred = alpha_pred * 255
alpha_pred = alpha_pred.astype(np.uint8)
alpha_pred = alpha_pred[32:h+32, 32:w+32]
if alpha_pred.shape[0] != image_dict['oh'] or alpha_pred.shape[1] != image_dict['ow']:
alpha_pred = cv2.resize(alpha_pred, (image_dict['ow'], image_dict['oh']))
else:
n, c, _, _ = alpha_pred.shape
h, w = image_dict['alpha_shape']
alpha_pred = alpha_pred.data.cpu().numpy()
alpha_pred = alpha_pred[:,:,32:h+32,32:w+32]
alpha_pred = alpha_pred.transpose((0,2,1,3))
alpha_pred = alpha_pred.reshape(n,h,w*c)
alpha_pred = np.transpose(alpha_pred, (1,2,0))
alpha_pred = alpha_pred * 255
alpha_pred = alpha_pred.astype(np.uint8)
if len(alpha_pred.shape) == 2:
alpha_pred = alpha_pred[:,:,None]
return alpha_pred
def single_inference(model, image_dict, thumbnail=False):
model.cuda()
with torch.no_grad():
image, mask = image_dict['image'], image_dict['mask']
alpha_shape = image_dict['alpha_shape']
image = image.cuda()
mask = mask.cuda()
pred = [model(image[i:i+1], mask[i:i+1], is_training=False) for i in range(mask.size(0))]
pred = utils.reduce_dict(pred)
alpha_pred_os1, alpha_pred_os4, alpha_pred_os8 = pred['alpha_os1'], pred['alpha_os4'], pred['alpha_os8']
### refinement
alpha_pred = alpha_pred_os8.clone().detach()
weight_os4 = utils.get_unknown_tensor_from_pred(alpha_pred, rand_width=CONFIG.model.self_refine_width1, train_mode=False)
weight_os4 = weight_os4.max(dim=1, keepdim=True)[0]
alpha_pred = alpha_pred * (weight_os4<=0).float() + alpha_pred_os4 * (weight_os4>0).float()
weight_os1 = utils.get_unknown_tensor_from_pred(alpha_pred, rand_width=CONFIG.model.self_refine_width2, train_mode=False)
weight_os1 = weight_os1.max(dim=1, keepdim=True)[0]
alpha_pred = alpha_pred * (weight_os1<=0).float() + alpha_pred_os1 * (weight_os1>0).float()
if model.refiner is not None:
alpha_pred_list = model.forward_refiner(image, alpha_pred.clone().detach(), pred['feature'].clone().detach(), is_training=False, nostop=False)
alpha_pred = alpha_pred * (weight_os1<=0).float() + alpha_pred_list[-1] * (weight_os1>0).float()
return transform(image_dict, alpha_pred, thumbnail=thumbnail)
def generator_tensor_dict(image_path, mask_paths, max_side=1920):
# read images
image = cv2.imread(image_path)
mask = np.stack([(cv2.imread(mask_path, 0).astype(np.float32)/255.) for mask_path in mask_paths], axis=2) # h*w*k
oh, ow = image.shape[:2]
if image.shape[:2] != mask.shape[:2]:
mask = cv2.resize(mask, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_NEAREST)
if max(ow, oh)>max_side:
ratio = max_side / max(ow, oh)
nh = int(ratio * oh)
nw = int(ratio * ow)
image = cv2.resize(image, (nw, nh))
mask = cv2.resize(mask, (nw, nh), interpolation=cv2.INTER_NEAREST)
if len(mask.shape) == 2:
mask = mask[:,:,None]
sample = {'image': image, 'mask': mask, 'alpha_shape': mask.shape[:2]}
# reshape
h, w = sample["alpha_shape"]
if h % 32 == 0 and w % 32 == 0:
padded_image = np.pad(sample['image'], ((32,32), (32, 32), (0,0)), mode="reflect")
padded_mask = np.pad(sample['mask'], ((32,32), (32, 32), (0,0)), mode="reflect")
sample['image'] = padded_image
sample['mask'] = padded_mask
else:
target_h = 32 * ((h - 1) // 32 + 1)
target_w = 32 * ((w - 1) // 32 + 1)
pad_h = target_h - h
pad_w = target_w - w
padded_image = np.pad(sample['image'], ((32,pad_h+32), (32, pad_w+32), (0,0)), mode="reflect")
padded_mask = np.pad(sample['mask'], ((32,pad_h+32), (32, pad_w+32), (0,0)), mode="reflect")
sample['image'] = padded_image
sample['mask'] = padded_mask
# ImageNet mean & std
mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
std = torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
# convert GBR images to RGB
image, mask = sample['image'][:,:,::-1], sample['mask']
# swap color axis
image = image.transpose((2, 0, 1)).astype(np.float32)
mask = mask.transpose((2, 0, 1)).astype(np.float32)
# normalize image
image /= 255.
sample['image'] = torch.from_numpy(image)
sample['image'] = sample['image'].sub_(mean).div_(std)
sample['mask'] = torch.from_numpy(mask)
mask_batch = []
for i in range(sample['mask'].shape[0]):
mask_t = sample['mask'][i]
mask_r = torch.sum(sample['mask'], dim=0) - mask_t
mask_b = 1 - torch.sum(sample['mask'], dim=0)
mask = torch.stack([mask_t, mask_r, mask_b], dim=0)
mask_batch.append(mask)
mask_batch = torch.stack(mask_batch, dim=0)
sample['mask'] = mask_batch
# add first channel
sample['image'] = sample['image'][None, ...].repeat(sample['mask'].shape[0],1,1,1)
sample['ow'] = ow
sample['oh'] = oh
return sample
def get_multiple_instances(image_list, mask_list):
mask_dict = {}
for item in mask_list:
path, name = os.path.split(item)
if path not in mask_dict:
mask_dict[path] = []
mask_dict[path].append(item)
image_list = sorted(list(set(image_list)))
mask_list = [mask_dict[key] for key in sorted(mask_dict.keys())]
assert len(image_list) == len(mask_list)
return image_list, mask_list
if __name__ == '__main__':
print('Torch Version: ', torch.__version__)
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='config/InstMatt.toml')
parser.add_argument('--checkpoint', type=str, default='checkpoints/InstMatt/best_model.pth', help="path of checkpoint")
parser.add_argument('--image-dir', type=str, default='datasets/images', help="input image dir")
parser.add_argument('--mask-dir', type=str, default='datasets/masks', help="input mask dir")
parser.add_argument('--image-ext', type=str, default='.png', help="input image ext")
parser.add_argument('--mask-ext', type=str, default='.png', help="input mask ext")
parser.add_argument('--output', type=str, default='results', help="output dir")
parser.add_argument('--guidance-thres', type=int, default=128, help="guidance input threshold")
parser.add_argument('--max-side', type=int, default=1280, help="maximum side length")
# Parse configuration
args = parser.parse_args()
with open(args.config) as f:
utils.load_config(toml.load(f))
# Check if toml config file is loaded
if CONFIG.is_default:
raise ValueError("No .toml config loaded.")
args.output = os.path.join(args.output, CONFIG.version+'_'+args.checkpoint.split('/')[-1])
utils.make_dir(args.output)
# build model
model = networks.get_generator(
CONFIG,
encoder=CONFIG.model.arch.encoder,
decoder=CONFIG.model.arch.decoder,
refiner=CONFIG.model.arch.refiner,
)
model.cuda()
# load checkpoint
checkpoint = torch.load(args.checkpoint, map_location='cpu')
model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)
# inference
model = model.eval()
image_list = open(args.image_dir).read().splitlines()
mask_list = open(args.mask_dir).read().splitlines()
image_list, mask_list = get_multiple_instances(image_list, mask_list)
os.makedirs(args.output, exist_ok=True)
for idx, (image_path, mask_paths) in enumerate(zip(image_list, mask_list)):
print(f"Processing [{idx+1}/{len(mask_list)}] ...")
image_name = os.path.basename(image_path).split('.')[0]
os.makedirs(os.path.join(args.output, image_name), exist_ok=True)
image_dict = generator_tensor_dict(image_path, mask_paths, max_side=args.max_side)
alpha_pred = single_inference(model, image_dict, thumbnail=False)
for i in range(alpha_pred.shape[2]):
cv2.imwrite(os.path.join(args.output, image_name, os.path.basename(mask_paths[i])), alpha_pred[:,:,i])