-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
175 lines (110 loc) · 4.73 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import time
from py2neo import Graph, Relationship,NodeMatcher, Subgraph
from py2neo.matching import *
import pandas as pd
# In[2]:
def place(place_type,dic,graph):
b_place=dic[place_type]
if b_place=={}:
return
if b_place['country']!='':
graph.run("MERGE(p:Place:country{name:'%s'})"%b_place['country'])
graph.run("MATCH(a:Person), (n:Place:country) WHERE a.name=['%s'] AND n.name='%s' MERGE(a)-[r:%s]->(n)" % (dic['name'][0],b_place['country'],place_type))
if b_place['state']!='':
graph.run("MERGE(p:Place:state{name:'%s'})"%b_place['state'])
graph.run("MATCH(a:Place:state), (n:Place:country) WHERE a.name='%s' AND n.name='%s' MERGE(a)-[r:LocateIn]->(n)" % (b_place['state'], b_place['country']))
graph.run("MATCH(a:Person), (n:Place:state) WHERE a.name=['%s'] AND n.name='%s' MERGE(a)-[r:%s]->(n)" % (dic['name'][0], b_place['state'],place_type))
if b_place['city']!='':
graph.run("MERGE(p:Place:city{name:'%s'})"%b_place['city'])
graph.run("MATCH(a:Place:city), (n:Place:state) WHERE a.name='%s' AND n.name='%s' MERGE(a)-[r:LocateIn]->(n)" % (b_place['city'], b_place['state']))
graph.run("MATCH(a:Person), (n:Place:city) WHERE a.name=['%s'] AND n.name='%s' MERGE(a)-[r:%s]->(n)" % (dic['name'][0], b_place['city'],place_type))
# In[3]:
def person(relation,dic,graph):
person=dic[relation]
for i in person:
graph.run("MERGE(p:Person{name:['%s']})"%i)
graph.run("MATCH(a:Person), (n:Person) WHERE a.name=['%s'] AND n.name=['%s'] CREATE(a)-[r:%s]->(n)" % (dic['name'][0],i,relation))
# In[4]:
def works(relation,dic,graph):
works=dic[relation]
for i in works:
graph.run("MERGE(p:Movie{name:'%s'})"%i)
graph.run("MATCH(a:Person), (n:Movie) WHERE a.name=['%s'] AND n.name='%s' CREATE(a)-[r:%s]->(n)" % (dic['name'][0],i,relation))
# In[5]:
def works_n(dic,graph):
dic_help={'actor':'act','director':'direct','screenwriter':'write'}
keysss=['actor','director','screenwriter']
works=dic['notableWork']+dic['debutWork']
for i in keysss:
if i in dic['type']:
for j in works:
graph.run("MATCH(a:Person), (n:Movie) WHERE a.name=['%s'] AND n.name='%s' CREATE(a)-[r:%s]->(n)" % (dic['name'][0],j,dic_help[i]))
# In[2]:
def save_person(csv,graph,num):
print("正在存储实例,请稍等...")
row_num=csv.shape[0]
keys=[]
for key in csv:
keys.append(key)
keys=keys[2:]
#print(keys)
dic={}
for i in range(13253):
num[0]=i
for j in range(22):
dic[keys[j]]=eval(csv.loc[i][keys[j]])
sentence="MERGE(p:Person"
for i in dic['type']:
sentence+=':'+i
sentence+='{'+'name:'+str(dic['name'])+',IMDb:'+str(dic['IMDb'])
+',originalName:'+str(dic['originalName'])+',foreignName:'+str(dic['foreignName'])
+',nickname:'+str(dic['nickname'])+',romanPinyin:'+str(dic['romanPinyin'])+',activeTime:'
+str(dic['activeTime'])+',debutTime:'+str(dic['debutTime'])+',award:'+str(dic['award'])
+',language:'+str(dic['language'])+',website:'+str(dic['website'])+',almaMater:'
+str(dic['almaMater'])+ ',education:'+str(dic['education'])+',religion:'
+str(dic['religion'])+',ethnicity:'+str(dic['ethnicity'])+',agency:'+str(dic['agency'])+'})'
graph.run(sentence)
place('birthPlace',dic,graph)
place('deathPlace',dic,graph)
place('nationality',dic,graph)
works('notableWork',dic,graph)
works('debutWork',dic,graph)
works_n(dic,graph)
print('所有节点存储完毕')
# In[32]:
def save_person_relation(csv,graph,num):
print("正在存储实例,请稍等...")
row_num=csv.shape[0]
keys=[]
for key in csv:
keys.append(key)
keys.pop(0)
key=keys[-5:-1]
dic={}
for i in range(13253):
num[0]=i
dic['name']=eval(csv.loc[i]['name'])
for j in range(4):
dic[key[j]]=eval(csv.loc[i][key[j]])
#print(dic)
for j in range(4):
person(key[j],dic,graph)
print('所有节点存储完毕')
# In[8]:
g = Graph(auth=('neo4j', 'w2newage'))
#g.run('match(n) detach delete n')
# In[26]:
data = pd.read_csv("graph_ready.csv")
print(data.shape)
# In[27]:
num=[0]
save_person(data,g,num)
# In[33]:
num1=[0]
save_person_relation(data,g,num1)
# In[23]:
print(num)
# In[ ]: