-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve_provided.F90
395 lines (316 loc) · 11.8 KB
/
solve_provided.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
!#include "config-f90.h"
subroutine solve_full(op_comm, input_matrix, N, ev_ptr_c, nblk)
!-------------------------------------------------------------------------------
! Standard eigenvalue problem - REAL version
!
! This program makes use of ELPA for a C++-callable routine.
! MVP
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
! Standard eigenvalue problem - REAL version
!
! This program demonstrates the use of the ELPA module
! together with standard scalapack routines
!
! Copyright of the original code rests with the authors inside the ELPA
! consortium. The copyright of any additional modifications shall rest
! with their original authors, but shall adhere to the licensing terms
! distributed along with the original code in the file "COPYING".
!
!-------------------------------------------------------------------------------
use elpa1
use elpa2
#ifdef WITH_OPENMP
use test_util
#endif
#ifdef HAVE_ISO_FORTRAN_ENV
use iso_fortran_env, only : error_unit
#endif
use iso_c_binding
implicit none
include 'mpif.h'
! -- beginning of input header
integer, intent(in) :: op_comm
integer(c_int), intent(in) :: N
real(c_double), dimension(1:N,1:N), intent(inout) :: input_matrix
real(c_double), dimension(1:N), intent(inout) :: ev_ptr_c
!-------------------------------------------------------------------------------
! Please set system size parameters below!
! na: System size
! nev: Number of eigenvectors to be calculated
! nblk: Blocking factor in block cyclic distribution
!-------------------------------------------------------------------------------
integer, intent(in) :: nblk
integer na, nev
!-------------------------------------------------------------------------------
! Local Variables
integer np_rows, np_cols, na_rows, na_cols
integer myid, nprocs, my_prow, my_pcol, mpi_comm_rows, mpi_comm_cols
integer i, mpierr, my_blacs_ctxt, sc_desc(9), info, nprow, npcol
integer, external :: numroc
real*8 err, errmax
real*8, allocatable :: a(:,:)
#if defined(ELPA_INTERNAL_DEBUG)
real*8, allocatable :: tmp1(:,:), tmp2(:,:), as(:,:)
#endif
real*8, allocatable, target :: z(:,:), ev(:)
integer :: iseed(4096) ! Random seed, size should be sufficient for every generator
integer :: STATUS
#ifdef WITH_OPENMP
integer :: omp_get_max_threads, required_mpi_thread_level, provided_mpi_thread_level
#endif
logical :: write_to_file
!-------------------------------------------------------------------------------
! Parse command line argumnents, if given
character*16 arg1
character*16 arg2
character*16 arg3
character*16 arg4
character*13 filename
#ifndef HAVE_ISO_FORTRAN_ENV
integer, parameter :: error_unit = 6
#endif
logical :: success
write_to_file = .false.
success = .true.
arg4 = "output"
na = N
nev = N
!-------------------------------------------------------------------------------
! MPI Initialization
call mpi_comm_rank(mpi_comm_world,myid,mpierr)
call mpi_comm_size(mpi_comm_world,nprocs,mpierr)
STATUS = 0
#ifdef WITH_OPENMP
if (myid .eq. 0) then
print *,"Threaded version of test program"
print *,"Using ",omp_get_max_threads()," threads"
print *," "
endif
#endif
if (myid .eq. 0) then
print *," "
print *,"This ELPA2 is build with"
#ifdef WITH_REAL_AVX_BLOCK2_KERNEL
print *,"AVX optimized kernel (2 blocking) for real matrices"
#endif
#ifdef WITH_REAL_AVX_BLOCK4_KERNEL
print *,"AVX optimized kernel (4 blocking) for real matrices"
#endif
#ifdef WITH_REAL_AVX_BLOCK6_KERNEL
print *,"AVX optimized kernel (6 blocking) for real matrices"
#endif
#ifdef WITH_REAL_GENERIC_KERNEL
print *,"GENERIC kernel for real matrices"
#endif
#ifdef WITH_REAL_GENERIC_SIMPLE_KERNEL
print *,"GENERIC SIMPLE kernel for real matrices"
#endif
#ifdef WITH_REAL_SSE_KERNEL
print *,"SSE ASSEMBLER kernel for real matrices"
#endif
#ifdef WITH_REAL_BGP_KERNEL
print *,"BGP kernel for real matrices"
#endif
#ifdef WITH_REAL_BGQ_KERNEL
print *,"BGQ kernel for real matrices"
#endif
endif
if (arg4 .eq. "output") then
write_to_file = .true.
if (myid .eq. 0) print *,"Writing output files"
endif
!-------------------------------------------------------------------------------
! Selection of number of processor rows/columns
! We try to set up the grid square-like, i.e. start the search for possible
! divisors of nprocs with a number next to the square root of nprocs
! and decrement it until a divisor is found.
do np_cols = NINT(SQRT(REAL(nprocs))),2,-1
if(mod(nprocs,np_cols) == 0 ) exit
enddo
! at the end of the above loop, nprocs is always divisible by np_cols
np_rows = nprocs/np_cols
if(myid==0) then
print *
print '(a)','Standard eigenvalue problem - REAL version'
print *
print '(3(a,i0))','Matrix size=',na,', Number of eigenvectors=',nev,', Block size=',nblk
print '(3(a,i0))','Number of processor rows=',np_rows,', cols=',np_cols,', total=',nprocs
print *
endif
!-------------------------------------------------------------------------------
! Set up BLACS context and MPI communicators
!
! The BLACS context is only necessary for using Scalapack.
!
! For ELPA, the MPI communicators along rows/cols are sufficient,
! and the grid setup may be done in an arbitrary way as long as it is
! consistent (i.e. 0<=my_prow<np_rows, 0<=my_pcol<np_cols and every
! process has a unique (my_prow,my_pcol) pair).
my_blacs_ctxt = mpi_comm_world
call BLACS_Gridinit( my_blacs_ctxt, 'C', np_rows, np_cols )
call BLACS_Gridinfo( my_blacs_ctxt, nprow, npcol, my_prow, my_pcol )
if (myid==0) then
print '(a)','| Past BLACS_Gridinfo.'
end if
! All ELPA routines need MPI communicators for communicating within
! rows or columns of processes, these are set in get_elpa_row_col_comms.
mpierr = get_elpa_communicators(mpi_comm_world, my_prow, my_pcol, &
mpi_comm_rows, mpi_comm_cols)
if (myid==0) then
print '(a)','| Past split communicator setup for rows and columns.'
end if
! Determine the necessary size of the distributed matrices,
! we use the Scalapack tools routine NUMROC for that.
na_rows = numroc(na, nblk, my_prow, 0, np_rows)
na_cols = numroc(na, nblk, my_pcol, 0, np_cols)
! Set up a scalapack descriptor for the checks below.
! For ELPA the following restrictions hold:
! - block sizes in both directions must be identical (args 4+5)
! - first row and column of the distributed matrix must be on row/col 0/0 (args 6+7)
call descinit( sc_desc, na, na, nblk, nblk, 0, 0, my_blacs_ctxt, na_rows, info )
if (myid==0) then
print '(a)','| Past scalapack descriptor setup.'
end if
!-------------------------------------------------------------------------------
! Allocate matrices and set up a test matrix for the eigenvalue problem
allocate(a (na_rows,na_cols))
allocate(z (na_rows,na_cols))
#if defined(ELPA_INTERNAL_DEBUG)
allocate(as(na_rows,na_cols))
#endif
allocate(ev(na))
! For getting a symmetric test matrix A we get a random matrix Z
! and calculate A = Z + Z**T
! We want different random numbers on every process
! (otherways A might get rank deficient):
#if 0
iseed(:) = myid
call RANDOM_SEED(put=iseed)
call RANDOM_NUMBER(z)
a(:,:) = z(:,:)
if (myid==0) then
print '(a)','| Random matrix block has been set up. (only processor 0 confirms this step)'
end if
call pdtran(na, na, 1.d0, z, 1, 1, sc_desc, 1.d0, a, 1, 1, sc_desc) ! A = A + Z**T
if (myid==0) then
print '(a)','| Random matrix has been symmetrized.'
end if
#else
call section_matrix(na, a, na_rows, nblk, my_prow, my_pcol, np_rows, &
np_cols, op_comm, input_matrix)
if (myid==0) then
print '(a)','| input matrix has been assigned.'
end if
#ifdef DEBUG
write(filename,"(A6,I3.3,A4)") "output",myid,".txt"
open(12,file=filename,status="unknown")
write(12,"(20E12.5)") (input_matrix(i,:),i=1,20)
close(12)
#endif
#endif
! Save original matrix A for later accuracy checks
#if defined(ELPA_INTERNAL_DEBUG)
as = a
#endif
! set print flag in elpa1
elpa_print_times = .true.
!-------------------------------------------------------------------------------
! Calculate eigenvalues/eigenvectors
if (myid==0) then
print '(a)','| Entering two-stage ELPA solver ... '
print *
end if
#if defined(LOCKING_TIMING)
call mpi_barrier(mpi_comm_world, mpierr) ! for correct timings only
#endif
success = solve_evp_real_2stage(na, nev, a, na_rows, ev, z, na_rows, nblk, na_cols, &
mpi_comm_rows, mpi_comm_cols, mpi_comm_world)
if (.not.(success)) then
write(error_unit,*) "solve_evp_real_2stage produced an error! Aborting..."
call MPI_ABORT(mpi_comm_world, mpierr)
endif
if (myid==0) then
print '(a)','| Two-step ELPA solver complete.'
print *
end if
if(myid == 0) print *,'Time transform to tridi :',time_evp_fwd
if(myid == 0) print *,'Time solve tridi :',time_evp_solve
if(myid == 0) print *,'Time transform back EVs :',time_evp_back
if(myid == 0) print *,'Total time (sum above) :',time_evp_back+time_evp_solve+time_evp_fwd
#if defined(ELPA_DEBUG)
if(write_to_file) then
if (myid == 0) then
open(17,file="EVs_real2_out.txt",form='formatted',status='unknown')
do i=1,na
write(17,*) i,ev(i)
enddo
close(17)
endif
endif
#endif
!-------------------------------------------------------------------------------
! Test correctness of result (using plain scalapack routines)
call gather_matrix(na, z, na_rows, na_cols, nblk, my_prow, my_pcol, np_rows, &
np_cols, op_comm, my_blacs_ctxt, input_matrix)
if (myid==0) then
print '(a)','| input matrix has been rewritten.'
end if
#if defined(ELPA_INTERNAL_DEBUG)
call BLACS_Gridinit( my_blacs_ctxt, 'C', 1, 1)
allocate(tmp1(na_rows,na_cols))
! 1. Residual (maximum of || A*Zi - Zi*EVi ||)
! tmp1 = A * Z
call pdgemm('N','N',na,nev,na,1.d0,as,1,1,sc_desc, &
z,1,1,sc_desc,0.d0,tmp1,1,1,sc_desc)
deallocate(as)
allocate(tmp2(na_rows,na_cols))
! tmp2 = Zi*EVi
tmp2(:,:) = z(:,:)
do i=1,nev
call pdscal(na,ev(i),tmp2,1,i,sc_desc,1)
enddo
! tmp1 = A*Zi - Zi*EVi
tmp1(:,:) = tmp1(:,:) - tmp2(:,:)
! Get maximum norm of columns of tmp1
errmax = 0
do i=1,nev
err = 0
call pdnrm2(na,err,tmp1,1,i,sc_desc,1)
errmax = max(errmax, err)
enddo
! Get maximum error norm over all processors
err = errmax
call mpi_allreduce(err,errmax,1,MPI_REAL8,MPI_MAX,MPI_COMM_WORLD,mpierr)
if(myid==0) print *
if(myid==0) print *,'Error Residual :',errmax
if (errmax .gt. 5e-12) then
status = 1
endif
! 2. Eigenvector orthogonality
! tmp1 = Z**T * Z
tmp1 = 0
call pdgemm('T','N',nev,nev,na,1.d0,z,1,1,sc_desc, &
z,1,1,sc_desc,0.d0,tmp1,1,1,sc_desc)
! Initialize tmp2 to unit matrix
tmp2 = 0
call pdlaset('A',nev,nev,0.d0,1.d0,tmp2,1,1,sc_desc)
! tmp1 = Z**T * Z - Unit Matrix
tmp1(:,:) = tmp1(:,:) - tmp2(:,:)
! Get maximum error (max abs value in tmp1)
err = maxval(abs(tmp1))
call mpi_allreduce(err,errmax,1,MPI_REAL8,MPI_MAX,MPI_COMM_WORLD,mpierr)
if(myid==0) print *,'Error Orthogonality:',errmax
if (errmax .gt. 5e-12) then
status = 1
endif
deallocate(tmp1)
deallocate(tmp2)
#endif
ev_ptr_c(:) = ev(:)
deallocate(a)
deallocate(z)
deallocate(ev)
call blacs_gridexit(my_blacs_ctxt)
end subroutine
!-----------------------------------------------------------------------