

DON'T BE SO ONE-DIMENSIONAL: HOW TO ENGINEER MULTI-DIMENSIONAL HIGH CARDINALITY CATEGORICAL INPUTS FOR MACHINE LEARNING

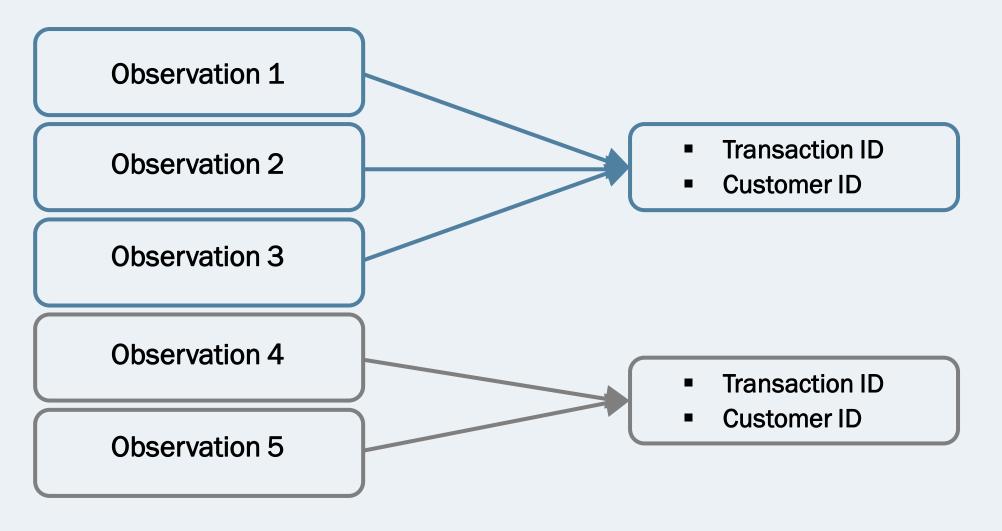
Aleksandar Nikolic, Georgia-Pacific LLC

Outline for Today

What is multi-dimensional high cardinality?

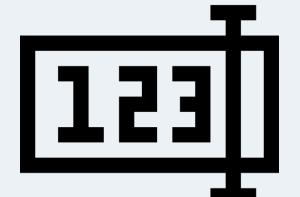
Traditional methods of categorical feature engineering

New categorical feature engineering method

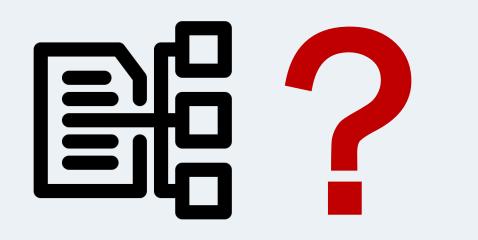

K-fold target encoding

Results of training machine learning models with new features

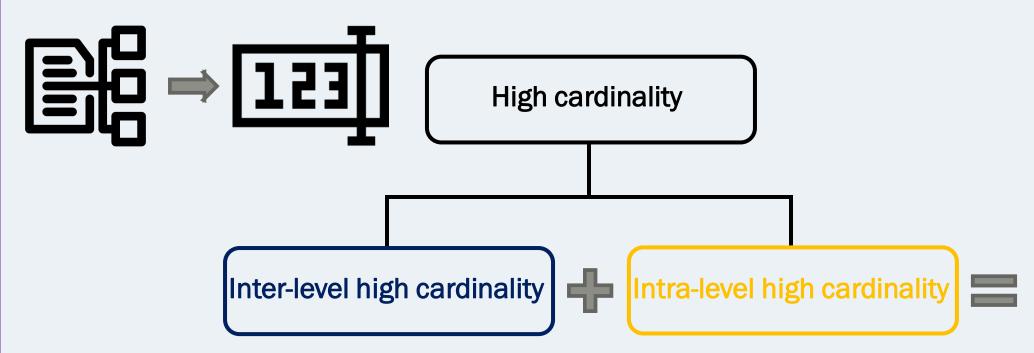
Hazards of new method



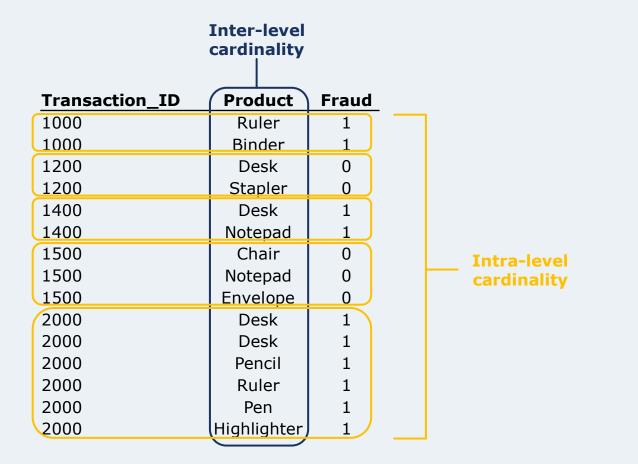
Introduction



There are Many Methods to Easily Summarize Numeric Data, But Not for Categorical Data


- Sum
- Mean
- Min/Max
- Range

Icon made by Freepik from www.Flaticon.com Icon made by orvipixel from www.Flaticon.com


Aggregating Categorical Data Comes With Multiple Challenges

Multi-dimensional high cardinality

What Does a Dataset with Multi-Dimensionality High-Cardinality Look Like?

Traditional Methods of Categorical Feature Engineering Do Not Adequately Solve the Problem of Multi-Dimensional High Cardinality

Target-agnostic
Target-based

	Accounts For Inter-level High Cardinality?	Accounts For Intra-level High Cardinality?	No Large Increase of New Inputs?	Conversion to Numeric Input?
Decision Tree Consolidation		×		
One-hot Encoding				
String Concatenation	\mathbf{x}			\mathbf{x}
			1	

MOBILE • ALABAMA

Multi-Dimensional High Cardinality Calls for a Different Approach to Feature Engineering

Transaction_ID	Product	Fraud
1000	Ruler	1
1000	Binder	1
1200	Desk	0
1200	Stapler	0
1400	Desk	1
1400	Notepad	1
1500	Chair	0
1500	Notepad	0
1500	Envelope	0
2000	Desk	1
2000	Deel	4
2000	Pencil	1
2000	Ruler	1
2000	Pen	1
2000	Highlighter	1

Target encoding

- For "Desk", the target encoded value would be .75 (3÷4)
- Target representation encoding
 - The target representation value for "Desk" would be .3 (3÷10)
 - Double counting
 - Solved by de-duplicating observations at the *Transaction_ID* and *Product* levels
 - New value for "Desk" would be
 .22 (2÷9)

Why Use Target Representation Instead of Target Encoding?

Transaction_ID	Product	Fraud
1000	Ruler	1
1000	Binder	1
1200	Desk	0
1200	Stapler	0
1400	Desk	1
1400	Notepad	1
1500	Chair	0
1500	Notepad	0
1500	Envelope	0
2000	Desk	1
2000	Pencil	1
2000	Ruler	1
2000	Pen	1
2000	Highlighter	1

- Target representation encoding places less weight on rarely occurring categorical values
 - For "Pen", the target encoded value is 1 (1÷1) while the target representation value is .11 (1÷9)
 - For "Desk", the target encoded value is .66 (2÷3) while the target representation value is .22 (2÷9)
- Target representation is more interpretable

Step 1: Concatenate the Transaction ID and Categorical Input Columns

1	2		3
Transaction_ID	Product	Fraud	Transaction_ID_Product
1000	Ruler	1	1000_Ruler
1000	Binder	1	1000_Binder
1200	Desk	0	1200_Desk
1200	Stapler	0	1200_Stapler
1400	Desk	1	1400_Desk
1400	Notepad	1	1400_Notepad
1500	Chair	0	1500_Chair
1500	Notepad	0	1500_Notepad
1500	Envelope	0	1500_Envelope
2000	Desk	1	2000_Desk
2000	Desk	1	2000_Desk
2000	Pencil	1	2000_Pencil
2000	Ruler	1	2000_Ruler
2000	Pen	1	2000_Pen
2000	Highlighter	1	2000_Highlighter

Step 2: Remove Duplicate Transaction_ID_Product Observations and Create a Target Hit Indicator Column

nsaction_ID
1400
2000
1000
2000
2000
2000
2000
1400
1000

If Fraud = 1, then Raw_Product_TH = 1

Step 3: Create Target Representation Column

Product	Tot_Raw_Product_TH	Raw_Product_Target_Rep
Desk	2	22%
Ruler	2	22%
Pencil	1	11%
Pen	1	11%
Notepad	1	11%
Highlighter	1	11%
Binder	1	11%
Totals	9	100%

2

- Take the sum of the target hits by Product, and calculate the proportion of target hits by Product to get the target representation value (Raw_Product_Target_Rep)
 - CTOBER 23-25TH, 2022 MOBILE • ALABAMA

• "Totals" row included for clarity, not necessary for this step

Step 4: Map Raw Target Representation Column Back to Dataset Created in Step 2

Transaction_ID	Product	Raw_Product_TH_Ind	Raw_Product_Target_Rep
1000	Ruler	1	22%
1000	Binder	1	11%
1400	Desk	1	22%
1400	Notepad	1	11%
2000	Desk	1	22%
2000	Ruler	1	22%
2000	Pencil	1	11%
2000	Pen	1	11%
2000	Highlighter	1	11%

1

Use the *Product* column as the key

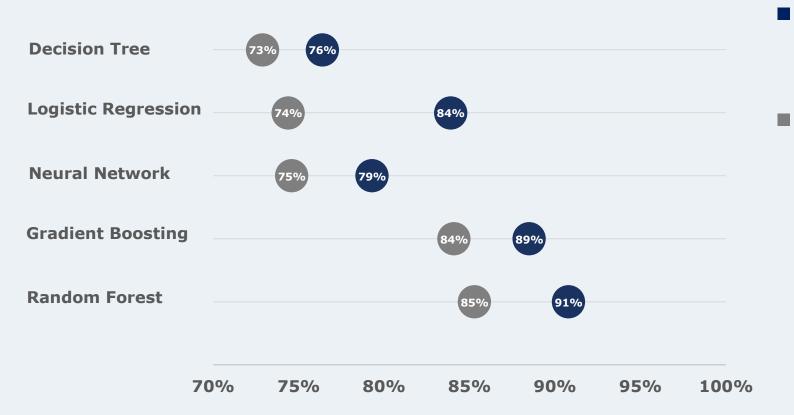
Step 5: Create New Features Summarized to the Unique Level of Interest

0	2	3	4
Transaction_II	D Product_Tot_TH	Product_Sum_Target_Rep	Product_Enc_Prod
1000	2	33%	0.66
1400	2	33%	0.66
2000	5	78%	3.90

- Product_Tot_TH = Sum of the Raw_Product_TH_Ind column, count of distinct products associated with target
- Product_Sum_Target_Rep = Sum of the Raw_Product_Target_Rep column, sum of target representation encodings for all products within level of interest
- Product_Enc_Prod = Product of Product_Tot_TH and Product_Sum_Target_Rep columns

Since the New Features are Based Off the Target Column K-Fold Target Encoding Will Need to be Performed

Used to head off data leakage and overfitting


Split the train data into k folds

Calculate the target representation for each fold

Calculate the mean target representation from all folds for each unique categorical input value

Including These Newly Created Features Can Improve Machine Learning Model Performance

- Ten models were trained, five with and five without the four new features
- All five models that included the four features (blue circles) outperformed the models without the features (grey circles) for recall at the top scored percentile

Watchout!

Dirty data

Overfitting

Scoring new data with previously unseen values

Bias towards transactions with multiple observations

Conclusion

No easy solution for multi-dimensional high cardinality

Not many solutions publicly available

New method proven effective on one dataset

Additional research is necessary

Always experiment with multiple methods

Thank You For Listening!

Contact Information

Aleksandar Nikolic

Senior Data Scientist

Georgia-Pacific LLC

Email: nikolicxa@gmail.com

The paper, SAS code, and datasets can be found here:

https://github.com/nikolicxa/multi-dimensional-highcardinality

