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ABSTRACT  

Knowing how to process categorical inputs is a key skill that every data scientist must know. 
While a wide array of techniques is available to prepare categorical data for machine learning, 
they do not address all the problems that a data scientist could face when working with such 

data. One such problem arises from working with transactional datasets where there could be 
multiple observations per level of interest. It is possible for a categorical input to not only 
have a high number of unique values across the entire dataset, but also multiple unique 
values within the level of interest. This paper introduces a feature engineering technique that 
accounts for these problems, and demonstrates the solution using base SAS® code, and 
SAS® Cloud Analytic Services (CAS) procedures found in the SAS® Viya™ 3.5. 

The SAS code and datasets from the demonstrations can be downloaded from 
https://github.com/nikolicxa/multi-dimensional-high-cardinality.  

INTRODUCTION  

Most data scientists will eventually encounter transactional data which contains more than 
one observation per level of interest. A common example of transactional data is retail sales 
records, where there could be multiple unique items purchased within a single transaction. A 

level of interest is the unit or subject that you aggregate the data to prior to training machine 
learning models. Some examples of levels of interest within a retail sales dataset are the 
transaction ID (which could contain multiple unique items purchased), and customer ID 
(which could contain multiple unique items purchased spanning multiple transactions).  

While there are many effective methods of summarizing numeric features to the level of 
interest (e.g., calculating the sum, min, max, mean, or range of the input), it is not as 
straight forward with categorical inputs. You need to convert them to numeric representations 
since most machine learning models cannot process categorical features. One impediment to 
this is high cardinality, which is when the input contains a large number of distinct values [1]. 
When working with transactional data, this could be further complicated by the appearance of 
two variations of this problem. The first is where there are many distinct values spanning the 
entire input (categorized as inter-level high cardinality). The second is where there are unique 
levels of interest with multiple observations containing multiple distinct values (categorized as 

intra-level high cardinality). If both conditions are present, then the data has multi-
dimensional high cardinality.  

The objective of this paper is to introduce a method of creating features derived from inputs 
with multi-dimensional high cardinality, with the aim of using them to train machine learning 
models. It first starts with a summary of multi-dimensional high cardinality illustrated with an 
example. Next, a review of some traditional categorical feature engineering techniques, and 

why they are not suited for predictors with multi-dimensional high cardinality. After that is an 
exposition of the new method, which includes a worked example. The subsequent section 
reviews how to perform k-fold target encoding. Following that, a worked example with SAS 
code that combines the concepts from the previous two sections. The penultimate section 
evaluates the possible benefits of including these new inputs in supervised machine learning 
models. The last section explores four hazards that come with this method, along with 
suggestions on how to attenuate them. 

https://github.com/nikolicxa/multi-dimensional-high-cardinality
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SECTION 1. AN EXAMPLE OF A DATASET WITH MULTI-DIMENSIONAL 

HIGH CARDINALITY 

To illustrate the concept of multi-dimensional high cardinality, and other ideas explored later, 
this paper will use a small sample dataset from a fictitious office supply store called Binders 
(along with other datasets introduced later). The Binders dataset contains a small sample of 
credit card transactions with three columns, Transaction_ID, Product, and Fraud. The 
Transaction_ID column contains the ID number for each sales transaction and is the level of 
interest. The Product column contains the descriptions of the assorted items that customers 
purchased. The Fraud column (also referred to as the target column throughout the paper) is 
an indicator of whether the credit card used for the transaction was fraudulent (1=fraudulent, 
0=not fraudulent). Since the company loses money on each transaction paid with a fraudulent 
credit card, the data scientists at Binders want to know if they can somehow use the Product 

input to train a new machine learning model that will flag risky transactions in the future.  

Is the Binders dataset in its current form in Figure 1 ready for analysis? The first thing you 
might notice is that there are multiple observations for every transaction ID, and they have 
unique Product values, signifying intra-level high cardinality. Also, this dataset contains a 
large amount of distinct Product values (10) relative to the number of observations (15), 
which is an indication of inter-level high cardinality. Given that this dataset presents both 

conditions of multi-dimensional high cardinality, you will need to perform categorical feature 
engineering before training machine learning models.  

 
 

 

Figure 1. Binders Dataset  
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SECTION 2. A REVIEW OF TRADITIONAL METHODS OF CATEGORICAL 

FEATURE ENGINEERING 

To train a variety of supervised machine learning models, all the inputs would need to contain 
numeric representations of the data since most models cannot process categorical features 
(with exceptions including tree-based and naïve Bayes models) [2]. Existing methods of 
converting categorical inputs into numeric inputs fall under one of two taxonomies, target-
agnostic and target-based techniques [3]. Target-agnostic methods do not use information 
from the target column while target-based techniques incorporate information about the 
target values associated with a given level. While methods from both taxonomies reduce the 
effects of multi-dimensional high cardinality, they do not completely solve the problem. 

One of the most popular target-agnostic methods of converting categorical to numeric inputs 
is one-hot encoding. This method creates a dichotomous feature (meaning that the input only 
contains one of the following two values, 1 or 0) for every distinct value found in the original 
input [4]. All observations containing the specific column value get a value of 1 while the rest 
get a 0. Since every original input value gets its own representative column, this method 
preserves all the information found in the original input when summarized to the level of 
interest. However, the number of new columns created would be the same number of unique 
values found in the original input, which could lead to a massive increase in the 

dimensionality of the dataset for inputs with inter-level high cardinality. For example, if you 
were to apply one-hot encoding to the Raw_Categorical_Input_4 column (found in the 
SESUGDTA.raw_non_sum_file), referred to in Table 1, it would result in the creation of 8,146 

new columns! While effective for low cardinality inputs (containing <10 unique values), you 
should avoid this method for inputs like Raw_Categorical_Input_4. 
 
 

Input Name Cardinality 
of Entire 
Dataset 

Percent of 
Transaction IDs with 

Multiple Records 

Max Cardinality for 
Transaction IDs with 

Multiple Records 

Raw_Categorical_Input_4 8,146 4.3% 7 

 
Table 1. Cardinality Statistics for Raw_Categorical_Input_4 
 

One target-based method of encoding is to consolidate the input by using a decision tree (also 
known as leaf encoding), done by training a decision tree using the categorical column as the 
sole modeling input [5]. The split search algorithm of the tree groups the input values that 
have similar target outcome proportions. You then can create new dichotomous variables for 
each leaf denoting the leaf assignment of every categorical input value. This is an effective 
way to consolidate inputs with moderate inter-level high cardinality. However, this model 
would not work for the Raw_Categorical_Input_4 input since it does not address the problem 
of intra-level high cardinality.  

One target-agnostic method that addresses the problem of intra-level high cardinality is to 
create a new column that contains a concatenated string of all the distinct values grouped to 
the level of interest. An example from the Binders dataset is for the observations where 

Transaction_ID = “1500”. When aggregated to a single observation, the value of the new 
input would be “Chair_Notepad_Envelope”. However, this makes the inter-level high 
cardinality worse due to the addition of new distinct values created by the concatenated 
strings. On top of that, this final column is still a categorical input, and you would need to 
perform an additional step to convert the new column into a numeric feature.  
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SECTION 3. TARGET REPRESENTATION ENCODING: METHODOLOGY, 

RATIONALE, AND A WORKED EXAMPLE  

Creating new features that address the problem of multi-dimensional high cardinality will 
require a novel approach called target representation encoding. This approach is a variation of 
an existing method called target encoding. Target encoding (also known as mean encoding) is 
a method of mapping each unique categorical input value to the mean target value [6]. For a 
classification model, you would calculate this by taking the sum of the target column and 
dividing it by the number of occurrences for every unique categorical value (Equation 1).  

Equation 1. 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 =
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑎𝑐ℎ 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 

 

For example, in the Binders dataset, there are four observations of the value “Desk” (Figure 
2). Of the four observations, three have a Fraud value of 1. Therefore, the target encoded 
value for “Desk” would be .75 (3÷4).  

 

 
Figure 2. 

 

Target representation encoding differs from target encoding by the denominator value used in 
the calculation. You calculate the target representation encoding (also referred to as target 
representation) values by taking the sum of the target column grouped by the unique values 

of the categorical input and dividing these sums by the sum of the target column for the 
entire dataset (Equation 2).  

Equation 2. 

𝑇𝑎𝑟𝑔𝑒𝑡 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 =
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑆𝑢𝑚 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑟 𝑒𝑛𝑡𝑖𝑟𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
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To calculate this value for “Desk” using the dataset in Figure 2, you take the sum of 
observations where “Desk” had a Fraud value of 1 (3) and divide that by the sum of the entire 
Fraud column (10), resulting in the target representation value of .3 (3÷10). In other words, 
the input value of “Desk” represents 30% of all occurrences of fraud in the dataset (Figure 3).  

    
Figure 3. Target Representation Encoding for all Product Values 

 

However, there is a minor problem with this calculation. There are two observations with a 
Transaction_ID value of “2000” and a Product value of “Desk” in Figure 2. This is an instance 
of “double counting”, which can inflate the target representation value. To solve this problem, 
you simply de-duplicate observations at the Transaction_ID and Product levels (Figure 4) and 
re-calculate the target representation column.  

 

    
Figure 4. De-Duplicated Binders Dataset 
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After de-duplication, the updated target representation value for “Desk” is now .22 (2÷9), 
shown in Figure 5. 

 

 
Figure 5. Target Representation Encoding for all Product Values 
After De-Duplication 

 

Why go with target representation encoding instead of target encoding? One answer has to do 
with the weight that both calculations assign to rarely occurring values of the categorical 
input. For example, “Pen” would be assigned a value of 1 and “Desk” .66 using target 
encoding (based on the dataset in Figure 4). However, there is only one observation 
containing the value of “Pen”, and it has a sum target value of 1, while there are three 
observations with a value of “Desk” with a sum target of 2. One might expect that “Desk” 
should be assigned a higher weight since the sum target value is twice the value of “Pen” and 
occurs more often in the dataset. The target representation values for “Pen” (.11) and “Desk” 
(.22) are more intuitive given the higher frequencies of the latter input value.  

Another answer is interpretability. If you had a single transaction with observations containing 
both “Pen” and “Desk” and summed up their respective target encoding values (1+.66 = 
1.66), it could be difficult to interpret since the value is greater than 1 (or 100%). If you were 
to use target representation encoding for the same transaction, the sum of these values 

would be .33 (.11+.22). You can then explain this value by saying that this transaction 
contained items whose values represented 33% of all fraudulent transactions in the dataset.   

To calculate new features using target representation encoding on a raw transactional 
dataset, you would need to follow the next five steps using the Binders dataset from Figure 1: 

STEP 1: CREATE A NEW COLUMN WITH THE CONCATENATED VALUES OF THE 

TRANSACTION ID AND CATEGORICAL INPUT COLUMNS 

Create a new column (Transaction_ID_Product) consisting of a concatenated string that 
combines the value of the Transaction_ID and Product columns (Figure 6). Note that the level 
of interest is Transaction_ID. 
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Figure 6. Resultant Table After Step 1 

 

STEP 2: REMOVE DUPLICATE TRANSACTION_ID_PRODUCT OBSERVATIONS 

AND CREATE A TARGET HIT INDICATOR COLUMN  

Next, remove all observations that have duplicate values of Transaction_ID_Product. Since the 
target representation column only consists of observations that had fraud associated with it, 
drop all records that have a value of 0 in the Fraud column and group by 

Transaction_ID_Product. Create a new column (Raw_Product_TH), which is a dichotomous 
variable that indicates whether there was a target value of 1 associated with the original 
Product column value (Figure 7).  

 

 

Figure 7. Resultant Table After Step 2 

 

STEP 3: CREATE TARGET REPRESENTATION COLUMN  

Create a new column, Tot_Raw_Product_TH, by taking the sum of the Raw_Product_TH 
column grouped by the original Product values. Create the raw target representation column, 
Raw_Product_Target_Rep, by dividing the observation value of the Tot_Raw_Product_TH by 
the total sum of the same column (Figure 8). The sum of the Raw_Product_Target_Rep 
column should equal to 100%. Please note the “Totals” row in Figure 8 included for clarity will 
not be in the calculations in the SAS code in the next section. 
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Figure 8. Resultant Table After Step 3.  

 

STEP 4: MAP RAW TARGET REPRESENTATION COLUMN BACK TO DATASET 

CREATED IN STEP 2  

Perform a left join on the table created in Step 2 with the table created in Step 3 using the 

Product column as the key. Create a new column called Raw_Product_TH_Ind and assign it a 
value of 1 (Figure 9). This new column indicates that the Product had a 
Raw_Product_Target_Rep value greater than 0.  

 

 

Figure 9. Resultant Table After Step 4. 

 

STEP 5: CREATE NEW FEATURES SUMMARIZED TO THE UNIQUE LEVEL OF 

INTEREST  

The first column, Product_Tot_TH, is a sum of the Raw_Product_TH_Ind column. 
Product_Sum_Target_Rep is the sum of the Raw_Product_Target_Rep column. 
Product_Enc_Prod is a product of the Product_Tot_TH and Product_Sum_Target_Rep columns 
(e.g., for Transaction_ID = “1000”, the calculation is 2 * .33 = .66). This column assumes 
that transactions with multiple unique products associated with the target will have a stronger 
relationship with the target column than single observation transactions. Group these three 
new columns by the level of interest (Transaction_ID). 

 

Figure 10. Resultant Table After Step 5. 

Transaction_ID Product Raw_Product_TH_Ind Raw_Product_Target_Rep

1000 Ruler 1 22%

1000 Binder 1 11%

1400 Desk 1 22%

1400 Notepad 1 11%

2000 Desk 1 22%

2000 Ruler 1 22%

2000 Pencil 1 11%

2000 Pen 1 11%

2000 Highlighter 1 11%
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SECTION 4. AN OVERVIEW OF K-FOLD TARGET ENCODING WITH A 

WORKED EXAMPLE 

Since the newly engineered inputs are based on the values of the target column, they can fall 
prey to data leakage, which is when “information is revealed to the model that gives it an 
unrealistic advantage to make better predictions,” [7]. Data leakage could lead to overfitting, 
which is when a model fits very well to the train data but performs poorly when predicting 
new samples [8]. Performing cross-fold target encoding (or k-fold target encoding) on the 
training dataset can head off the effects of data leakage [9]. K-fold target encoding starts by 
dividing the training data into k folds (for this example, k=5), stratified by the target column. 
Each fold is a subset of the training data containing ~20% of the unique levels of interest.  

The following demonstration will calculate the Product_Sum_Target_Rep column on a version 
of the Binders sample dataset (Figure 11). It contains 25 observations grouped to the 
Transaction_ID_Product level, along with their fold assignments (on the y-axis). This example 
will only use two Product values (“Ruler” and “Binder”). It also contains the Raw_Product_TH 
column indicating whether the transaction had a Fraud value of 1. 

 

 

Figure 11.  
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To calculate the target representation encoding values for Fold-1, use the data from folds 2-5. 
Since there are ten observations with a Raw_Product_TH of 1 in those folds, the denominator 
for the calculation is ten. To get the numerator, take the sum of Raw_Product_TH grouped by 
the Product value (6 for “Binder”, 4 for “Ruler”). The calculation yields a 
Raw_Product_Target_Rep value of 60% for “Binder” (6÷10), and 40% for “Ruler” (4÷10). 
Assign these values to their respective Product value in Fold-1 (Figure 12).  

 

 

Figure 12. Assigned Target Representation Encoding Values for Fold-1 
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To calculate the target representation values for Fold-2, follow the same process as above, 
except calculate the values based on the data from folds 1, 3, 4, and 5. The values of 
Raw_Product_Target_Rep for this fold are .45% for “Binder” (5÷11), and 55% for “Ruler” 
(6÷11). 

 

 

 Figure 13. Assigned Target Representation Encoding Values for Folds 1 and 2 
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Repeat this process until the dataset looks like Figure 14. Please ensure that you are using 
the dataset from Figure 11 to calculate these values for folds 2-5, and not the newly assigned 
values seen in Figures 12 and 13. 

 

  

Figure 14. Assigned Target Representation Encoding Values for All Folds 

 

The last step is to calculate the final Mean_Product_Target_Rep values, done by taking the 
mean of the target representation values for both “Binder” and “Ruler” from all five folds 
(Figure 15). The reason is so you can easily map the newly created values to new data (e.g., 

for scoring). Leaving this step out could have you end up with one Product value containing 
five different values of the target representation from the five folds. The sum of this column 
will not equal to 100% due to the overlap of data from the k-1 folds used for the calculation 
of the target representation.  

 

    

   Figure 15. Mean Target Representation Encodings for All Folds 
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SECTION 5. A SAS IMPLEMENTATION OF CALCULATING TARGET 

REPRESENTATION USING K-FOLD TARGET ENCODING 

This section applies the concepts reviewed in Sections 3 and 4 via SAS code using the 
SESUGDTA.raw_non_sum_file dataset. The following code creates three new numeric features 

derived from the Raw_Categorical_Input_4 feature. However, before applying these concepts, 

you will need to do some pre-processing first to set up the data.  

First, you need to create a list of unique Transaction_ID values ❶ for the train dataset. The 
Train column ❷ contains the train dataset indicator.  

 
   proc sql; 

   create table transaction_ID_list as select  

   distinct Transaction_Id, ❶ 

   Target 

 

   from SESUGDTA.raw_non_sum_file 

   

   where Train=1 ❷  

 

   order by Target; 

   run; 

 

 

The next step assigns the fold IDs to the transaction_ID_list dataset using PROC 

SURVEYSELECT. The GROUP= option specifies the value of k ❶. The STRATA statement 
stratifies the folds by the Target column ❸. The RENAME= option renames the output column 
containing the fold assignments from groupid to Train_Fold ❷.  

 

   proc surveyselect data=transaction_ID_list group=5 ❶ seed=220401 

         out=strat_kfold (RENAME=(groupid=Train_Fold )); ❷  

   strata Target; ❸   

   run; 

 

 

The following step maps the strat_kfold dataset with the fold assignments back to the 

original SESUGDTA.raw_non_sum_file dataset using the Transaction_ID as the key ❶.  

 

   proc sql; 

   create table raw_data_w_folds as select 

   a.*, 

   b.Train_Fold 

 

   from SESUGDTA.raw_non_sum_file as a left join strat_kfold as b on  

                                             a.Transaction_Id = b.Transaction_Id; ❶ 

   quit;  

 

The next code block is where the new feature engineering methodology begins. It first creates 
a concatenated string column that combines the values of the Transaction_ID and 

Raw_Categorical_Input_4 columns. ❶. The raw_data_w_folds dataset then gets split into 

train (raw_train_w_kfolds) ❷ and validation (raw_validation_w_kfolds) datasets ❸.  

 

   data raw_train_w_kfolds raw_validation_w_kfolds ; 

 set raw_data_w_folds; 

 

   Trans_ID_Raw_Categorical_Input_4 = CATX("~", Transaction_Id, Raw_Categorical_Input_4); ❶ 
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   if Train = 1 then output raw_train_w_kfolds; ❷ 

 else output raw_validation_w_kfolds;  

   run; 

 

Here is where the loop for k-fold target encoding begins ❶. It creates a column containing the 
original values of the Raw_Categorical_Input_4 column ❷ by splitting the concatenated string 

column Trans_ID_Raw_Categorical_Input_4. The code then creates the target indicator 
column ❸ on the data from four out of the five folds ❹ and drops all observations where the 
input value does not have a target hit ❺.  

A PROC SQL statement ❻ creates a macro variable (tot_train_cf) ❽ before summarizing the 
data to the values of Raw_Categorical_Input_4, which contains the sum of the 
Raw_Categorical_Input_4_TH column ❼. 

 

     %macro kfold(fold); ❶ 

 

   proc sql; 

   create table raw_categorical_input_dedup as select 

   Trans_ID_Raw_Categorical_Input_4, 

   substr(Trans_ID_Raw_Categorical_Input_4, index(Trans_ID_Raw_Categorical_Input_4, '~') +1)  

                                                                 as Raw_Categorical_Input_4, ❷ 

   case when sum(Target) > 0 then 1 

 else 0 end as Raw_Categorical_Input_4_TH ❸  

 

   from raw_train_w_Kfolds 

 

   where Train_Fold ne &fold ❹ 

 

   group by Trans_ID_Raw_Categorical_Input_4   

 

   having Raw_Categorical_Input_4_TH > 0; ❺     
   quit; 

 

   proc sql; ❻  

   select sum(Raw_Categorical_Input_4_TH) ❼  

   into :tot_train_cf ❽ 

   from raw_categorical_input_dedup; 

   quit;  

  

 

The next code block summarizes the raw_categorical_input_dedup dataset ❸ to the values 

of Raw_Categorical_Input_4 ❹ using the data from k - 1 folds. It then maps to the dataset 
containing the fold left out by the WHERE statement ❷ using Raw_Categorical_Input_4 as the 
key ❺. Please note that the columns calculated for this new dataset ❶ are only for 
observations where the Raw_Categorical_Input_4 had a Fraud value of 1 ❻. 

 

   proc sql; 

   create table Raw_Categorical_Input_4_f_&fold as select ❶ 

   a.Transaction_Id, 

   a.Raw_Categorical_Input_4, 

   case when b.Tot_Raw_Categorical_Input_4_TH > 0 then 1 

 else 0 end as Raw_Categorical_Input_4_TH,  

   b.Raw_Categorical_Input_4_Sum_Rep 

 

   from (select Trans_ID_Raw_Categorical_Input_4, 

   substr(Trans_ID_Raw_Categorical_Input_4,  

         index(Trans_ID_Raw_Categorical_Input_4, '~')  +1) as Raw_Categorical_Input_4, 

   scan(Trans_ID_Raw_Categorical_Input_4,1,'~') as Transaction_Id, 

   count(*) as total_line_items 

 

   from raw_train_w_Kfolds  
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   where Train_Fold = &fold ❷ 

 

   group by Trans_ID_Raw_Categorical_Input_4) as a left join (select  

                                             Raw_Categorical_Input_4, 

sum(Raw_Categorical_Input_4_TH) as 

Tot_Raw_Categorical_Input_4_TH, 

sum(Raw_Categorical_Input_4_TH)/&tot_train_cf. as 

Raw_Categorical_Input_4_Sum_Rep 

             

from raw_categorical_input_dedup ❸ 

 

group by Raw_Categorical_Input_4 ❹) as b  

on a.Raw_Categorical_Input_4 = 

b.Raw_Categorical_Input_4 ❺ 

 

   having Raw_Categorical_Input_4_TH > 0; ❻ 

   quit; 

 

   %mend; 

 

   %kfold(1); 

   %kfold(2); 

   %kfold(3); 

   %kfold(4); 

   %kfold(5);  

 

This step appends all five datasets created by the macro ❶. 

  

   data raw_categorical_input_4_train; 

 set raw_categorical_input_4_f_1   

  raw_categorical_input_4_f_2 

  raw_categorical_input_4_f_3 

  raw_categorical_input_4_f_4 

  raw_categorical_input_4_f_5; ❶ 

   run; 

 

 

The code then summarizes the raw_categorical_input_4_train dataset to the unique 

values found in the Raw_Categorical_Input_4 input ❸. It calculates the target representation 

❶ and target indicator ❷ columns using data from all five folds.  

 

   proc sql; 

   create table Raw_Categorical_Input_4_trn_avg as select 

   Raw_Categorical_Input_4, 

   mean(Raw_Categorical_Input_4_Sum_Rep) as Mean_Categorical_Input_4_Sum_Rep, ❶ 

   case when sum(Raw_Categorical_Input_4_TH) >0 then 1 

 else 0 end as Raw_Categorical_Input_4_TH_Ind ❷ 

 

   from raw_categorical_input_4_train 

 

   group by Raw_Categorical_Input_4 ❸ 

 

   having Raw_Categorical_Input_4_TH_Ind ne 0; 

   quit; 

 

Then, the Raw_Categorical_Input_4_trn_avg dataset maps to the train ❶ and validation ❸ 

datasets using Raw_Categorical_Input_4 as the key (❷ and ❹).  

 

   proc sql;  

   create table categorical_input_init_train as select 

   a.Transaction_Id, 

   a.Raw_Categorical_Input_4, 
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   b.Mean_Categorical_Input_4_Sum_Rep, 

   b.Raw_Categorical_Input_4_TH_Ind 

 

   from (select Trans_ID_Raw_Categorical_Input_4, 

         substr(Trans_ID_Raw_Categorical_Input_4,index(Trans_ID_Raw_Categorical_Input_4,'~') +1)        

as Raw_Categorical_Input_4, 

   scan(Trans_ID_Raw_Categorical_Input_4,1,'~') as Transaction_Id, 

   count(*) as Total_Line_Products 

 

    from raw_train_w_Kfolds ❶ 

 

group by Trans_ID_Raw_Categorical_Input_4) as a left join Raw_Categorical_Input_4_trn_avg 

as b on a.Raw_Categorical_Input_4 = b.Raw_Categorical_Input_4 ❷ 

 

   where b.Raw_Categorical_Input_4_TH_Ind > 0; 

   quit; 

 

   proc sql;  

   create table categorical_input_init_val as select 

   a.Transaction_Id, 

   a.Raw_Categorical_Input_4, 

   b.Mean_Categorical_Input_4_Sum_Rep, 

   b.Raw_Categorical_Input_4_TH_Ind 

 

   from (select Trans_ID_Raw_Categorical_Input_4, 

    substr(Trans_ID_Raw_Categorical_Input_4, 

         index(Trans_ID_Raw_Categorical_Input_4,'~')+1) as Raw_Categorical_Input_4, 

   scan(Trans_ID_Raw_Categorical_Input_4,1,'~') as Transaction_Id, 

   count(*) as Total_Line_Products 

 

   from raw_validation_w_Kfolds ❸ 

 

group by Trans_ID_Raw_Categorical_Input_4) as a left join    

Raw_Categorical_Input_4_trn_avg as b on a.Raw_Categorical_Input_4 = 

b.Raw_Categorical_Input_4 ❹ 

 

   where b.Raw_Categorical_Input_4_TH_Ind > 0; 

   quit; 

 

Finally, the last two PROC SQL statements summarizes the raw train ❷ and validation ❺ 
datasets to the Transaction_ID level (❸ and ❻), creating the final datasets 

(sum_categorical_input_4_train ❶ and sum_categorical_input_4_val ❸). You will use 

these datasets to train machine learning models.  

 

   proc sql; 

   create table sum_categorical_input_4_train as select ❶ 

   Transaction_Id, 

   sum(Raw_Categorical_Input_4_TH_Ind) as Categorical_Input_4_Tot_TH, 

   sum(Mean_Categorical_Input_4_Sum_Rep) as Categorical_Input_4_Sum_Tgt_Rep, 

   case when calculated Categorical_Input_4_Tot_TH > 0 then  

      calculated Categorical_Input_4_Tot_TH * calculated Categorical_Input_4_Sum_Tgt_Rep 

   else 0 end as Categorical_Input_4_Enc_Prod 

          

   from categorical_input_init_train ❷  

 

   group by Transaction_Id; ❸ 

   quit; 

 

   proc sql; 

   create table sum_categorical_input_4_val as select ❹ 

   Transaction_Id, 

   sum(Raw_Categorical_Input_4_TH_Ind) as Categorical_Input_4_Tot_TH, 

   sum(Mean_Categorical_Input_4_Sum_Rep) as Categorical_Input_4_Sum_Tgt_Rep, 

   case when calculated Categorical_Input_4_Tot_TH > 0 then  

      calculated Categorical_Input_4_Tot_TH * calculated Categorical_Input_4_Sum_Tgt_Rep 

   else 0 end as Categorical_Input_4_Enc_Prod 
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   from categorical_input_init_val ❺ 

 

   group by Transaction_Id; ❻ 

   quit; 

 

   proc datasets; delete transaction_ID_list strat_kfold 

   raw_data_w_folds raw_categorical_input_dedup  

   raw_categorical_input_4_f_1 raw_categorical_input_4_f_2 

   raw_categorical_input_4_f_3 raw_categorical_input_4_f_4 

   raw_categorical_input_4_f_5 raw_categorical_input_4_train  

   raw_train_w_Kfolds  raw_validation_w_Kfolds 

   categorical_input_init_train 

   categorical_input_init_val;  

   quit;  

 

SECTION 6. COMPARING THE PERFORMANCE OF MACHINE LEARNING 

MODELS WITH AND WITHOUT NEWLY CREATED FEATURES 

To assess whether the newly created inputs can improve model performance, ten supervised 
classification models were trained using the following datasets: SESUGDTA.model_train and 

SESUGDTA.model_train_val (see APPENDIX A: OVERVIEW OF DATA USED IN EXAMPLES for 

descriptions). Five were trained using a list of inputs that included the new features and the 

other five without them. The models trained were decision tree, logistic regression, random 
forest, gradient boosting, and neural network. The performance metric used for comparison 
was recall at the top scored percentile. Recall for this example was the proportion of all 
transactions in the validation dataset with a Target value of 1 scoring in the top percentile, 
based on the ranked values of the P_Target1 column. You can find the code used to fit the 
models and create the model metrics table in APPENDIX B: SAS CODE FOR MODEL TRAINING 
AND EVALUATION.  

 
As you will see in Figure 16 (note that the x-axis starts at 70%), all models that included the 
four newly created features (with recall percent enclosed in blue circles) clearly outperformed 
the models without these features (recall enclosed in grey circles) on the validation dataset. 
For tables containing additional model performance statistics, see APPENDIX C: ADDITIONAL 
MODEL PERFORMANCE TABLES. 

 

                  
 

 

Figure 16. Recall on Validation Dataset 
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SECTION 7. WATCHOUT! 

While the previous section demonstrated the possible benefits of including these newly 
created features in your models, there are pitfalls you should watch out for. Here are four, 
along with suggestions to address them: 

 

• Dirty data – Raw categorical data are notorious for being messy, where you must 
deal with issues such as misspellings, formatting irregularities, and mismatched cases. 
Without proper treatment, the new features will contain inaccurate representations of 
the original input.  

o How to address – Do extensive data cleaning on all categorical features that 
you want to use for your analyses. Review results with a subject matter expert 
before proceeding with feature engineering.  

 

• Overfitting – Engineering new features tied to the target increases the likelihood of 
data leakage, which could then cause overfitting.  

o How to address – Apply k-fold target encoding on the train dataset, as 
demonstrated in SECTION 5. A SAS IMPLEMENTATION OF CALCULATING 
TARGET REPRESENTATION AND K-FOLD TARGET ENCODING.  

▪ You can also apply smoothing to the target representation encoding 
calculation, which takes into consideration the total occurrences for each 
unique input value [10]. Feel free to experiment with the different data 
leakage/overfitting mitigation measures to see what works best for your 

analysis. 

 

• Scoring data with previously unseen categorical values – When scoring new 
data, it is possible for a transaction to contain values that were not in the original 
training data. There is no information on whether this new value is associated with the 
target or not.  

o How to address – Apply additive smoothing, which would assign a value close 
to the overall mean of the target column to the new unseen value.  

 

• Bias towards transactions with multiple observations – Transactions with 
multiple unique feature values associated with the target can have an overall stronger 
association with the target compared to records with a single observation. This is 
especially true for the total target hit (e.g., Tot_Product_TH) and product inputs (e.g., 
Product_End_Prod).  

o How to address – If your dataset contains records with mostly single 
observation transactions, consider only using the sum target representation 
feature (e.g., Sum_Product_Target_Rep). Even if you have mostly single 
observation transactions, having a bias towards transactions with multiple 

observations might not be an issue depending on the problem you want to 
solve. Consult with a subject matter expert for guidance.  

 

 

 



19 

CONCLUSION  

Working with categorical inputs in transactional datasets can present many challenges. The 
problem of multi-dimensional high cardinality is one of them, and there are not many clear 
solutions, or at least ones that are publicly available. While the new method introduced in this 
paper proved to be effective on a single dataset, additional research is necessary to confirm 
whether these results would generalize. In the end, a data scientist should always be willing 
to experiment with multiple methods, whether traditional or new, to see what works best for 
the problem at hand. 

 

APPENDIX A: OVERVIEW OF DATA USED IN EXAMPLES 

The methods summarized in this paper used masked data from an invoice error detection 
project at Georgia-Pacific LLC. The data contained 917,699 unique invoices, of which 1,158 of 
them had an error associated with them. The target column is Target (1=error, 0=no error).  

The first dataset, SESUGDTA.raw_non_sum_file, contains all transactions and their multiple 

line items in their non-summarized form. The dataset contains 1,082,788 million observations 
and the following four inputs: 

1. Transaction_ID: Transaction ID number 

2. Raw_Categorical_Input_1: Raw categorical input containing masked versions of the 
original input, done by assigning each distinct value a prefix of 
“Raw_Categorical_Value_”, followed by a number representing the unique value 

3. Target: Dichotomous variable indicating whether the distinct transaction ID had an 

error (Target=1) associated with it 

4. Train: Dichotomous variable indicating whether the distinct transaction ID is a part of 
the training dataset (Train=1)  

The model training and comparison portion of this paper used two datasets (SECTION 6. 
COMPARING THE PERFORMANCE OF MACHINE LEARNING MODELS WITH AND WITHOUT 
NEWLY CREATED FEATURES). The names of the datasets are SESUGDTA.model_train and 

SESUGDTA.model_train_val. Table 2 contains the observation and target counts for these 

datasets. The four new inputs tested were: Categorical_Input_1_Enc_Prod, 
Categorical_Input_2_Sum_Tgt_Rep, Categorical_Input_3_Enc_Prod, and 
Categorical_Input_4_Sum_Tgt_Rep. Please note that the SESUGDTA.model_train_val dataset 

contains both training and validation data. The training data indicator column is Train, which 
has a 70/30 train/validation split.  

 

Dataset Total Transactions 

with an Error 

Total Transactions 

without an Error 
Target % 

model_train 811 641,579 .13% 

model_train_val 1,158 916,541 .13% 

 
Table 2. 
 

Both datasets contain nineteen columns, sixteen of which were used as inputs for model 
training.  

1. Transaction_ID: Transaction ID number 
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2. Categorical_Input_1_Enc_Prod: Sum target representation feature based on methods 
outlined in SECTION 3. RATIONALE AND METHODOLOGY OF NEW FEATURE 
ENGINEERING METHOD  

3. Categorical_Input_2_Sum_Tgt_Rep: Feature containing the product of the sum target 
representation and total target hit indicator features, based on methods outlined in 

SECTION 3. RATIONALE AND METHODOLOGY OF NEW FEATURE ENGINEERING 
METHOD 

4. Categorical_Input_3_Enc_Prod: Sum target representation feature based on methods 
outlined in SECTION 3. RATIONALE AND METHODOLOGY OF NEW FEATURE 
ENGINEERING METHOD 

5. Categorical_Input_4_Sum_Tgt_Rep: Feature containing the product of the sum target 

representation and total target hit indicator features based on methods outlined in 
SECTION 3. RATIONALE AND METHODOLOGY OF NEW FEATURE ENGINEERING 
METHOD 

6. Numeric_Input_1: Numeric input  

7. Numeric_Input_2: Numeric input  

8. Numeric_Input_3: Numeric input  

9. Numeric_Input_4: Numeric input  

10. Numeric_Input_5: Numeric input  

11. Numeric_Input_6: Numeric input  

12. Numeric_Input_7: Numeric input  

13. Numeric_Input_8: Numeric input  

14. Numeric_Input_9: Numeric input  

15. Numeric_Input_10: Numeric input  

16. Numeric_Input_11: Numeric input  

17. Numeric_Input_12: Numeric input  

18. Target: Dichotomous variable indicating whether the distinct transaction ID had an 
error (Target=1) associated with it 

19. Train: Dichotomous variable indicating whether the distinct transaction ID is a part of 
the training dataset (Train=1)  

The SAS code files (along with their Python Jupyter Notebook equivalents) and datasets 

can be downloaded from https://github.com/nikolicxa/multi-dimensional-high-cardinality.  

 
 
 
 
 
 
 
 
 
 

 

https://github.com/nikolicxa/multi-dimensional-high-cardinality
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APPENDIX B: SAS CODE FOR MODEL TRAINING AND EVALUATION 

/************************************************************************/ 

/*  Preliminary notes             */ 

/************************************************************************/ 

 

/* To create the recall summary chart found in the COMPARING THE PERFORMANCE  

OF MACHINE LEARNING MODELS WITH AND WITHOUT NEWLY CREATED FEATURES section,  

you will need to have access to SAS Viya 3.5 or above, and load the model_train  

and model_train_val datasets into a SAS directory. 

*/ 

 

/************************************************************************/ 

/*  Assigning libname and opening a CAS session           */ 

/************************************************************************/ 

 

libname SESUGDTA ''; ***** Insert path to where datasets are stored *****; 

 

%let outdir = ; ***** Insert path to where you want to store models fitted by proc treesplit,       

proc logselect, and proc nnet *****; 

 

***** Create a CAS session *****; 

cas mySession sessopts=(caslib=casuser timeout=1800 locale="en_US"); 

caslib _all_ assign; 

 

/************************************************************************/ 

/*  Creating macro variables containing input lists for      */ 

/*  model comparisons         */ 

/************************************************************************/ 

 

%let all = Categorical_Input_1_Enc_Prod Numeric_Input_1 Categorical_Input_2_Sum_Tgt_Rep 

Numeric_Input_2 Categorical_Input_3_Enc_Prod Numeric_Input_3 Numeric_Input_4 Numeric_Input_5 

Numeric_Input_6 Numeric_Input_7 Numeric_Input_8 Numeric_Input_9 Numeric_Input_10 

Categorical_Input_4_Sum_Tgt_Rep Numeric_Input_11 Numeric_Input_12; 

 

%let noenc = Numeric_Input_1 Numeric_Input_2 Numeric_Input_3 Numeric_Input_4 Numeric_Input_5 

Numeric_Input_6 Numeric_Input_7 Numeric_Input_8 Numeric_Input_9 Numeric_Input_10 Numeric_Input_11 

Numeric_Input_12; 

 

/************************************************************************/ 

/*  Loading model_train and model_train_val datasets into    */ 

/*  memory                               */  

/************************************************************************/ 

 

data casuser.model_train; 

 set SESUGDTA.model_train; 

run; 

 

data casuser.model_train_val; 

 set SESUGDTA.model_train_val; 

run; 

 

/************************************************************************/ 

/*  Training five different models for both input lists       */ 

/************************************************************************/ 

 

%macro varlist(list,name); 

 

***** Decision Tree *****; 

proc treesplit data= casuser.model_Train; 

   class Target; 

   model Target = &list; 

   code file="&outdir./DT_Model_&name..sas";  

run; 

 

data casuser.scored_DT_&name (keep=P_Target1 P_Target0 Target Train); 

  set casuser.model_Train_val (keep=&list Target Train); 

  %include "&outdir./DT_Model_&name..sas"; 

run; 

 

***** Logistic Regression *****; 

proc logselect data=casuser.model_Train; 
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   model Target(event='1')= &list; 

   code file="&outdir./LR_Model_&name..sas" pcatall; 

run; 

 

data casuser.scored_LR_&name (keep=P_Target1 P_Target0 Target Train); 

  set casuser.model_Train_val (keep=&list Target Train); 

  %include "&outdir./LR_Model_&name..sas"; 

run; 

 

***** Random Forest *****; 

proc forest data=casuser.model_Train outmodel=casuser.RF_&name; 

 input &list/ level = interval; 

    Target Target/ level = nominal; 

run; 

 

proc forest data=casuser.model_Train_val inmodel=casuser.RF_&name; 

  output out=casuser.scored_RF_&name copyvars=(_ALL_); 

run; 

 

***** Gradient Boosting *****; 

proc gradboost data=casuser.model_Train  outmodel=casuser.GB_&name; 

  input  &list   / level = interval; 

  Target Target/ level=nominal; 

run; 

 

proc gradboost  data=casuser.model_Train_val   inmodel=casuser.GB_&name noprint; 

  output out=casuser.scored_GB_&name copyvars=(_ALL_); 

run; 

 

***** Neural Network *****; 

proc nnet data=casuser.model_Train; 

  Target Target/ level=nom; 

  input &list / level=int; 

 hidden 3; 

  Train outmodel=casuser.nnet_model; 

  ods exclude OptIterHistory; 

  code file="&outdir./NN_&name..sas"; 

run; 

 

data casuser.scored_NN_&name (keep=P_Target1 P_Target0 Target Train); 

  set casuser.model_Train_val  (keep=&list Target Train); 

  %include "&outdir./NN_&name..sas"; 

run; 

 

%mend; 

 

%varlist(&all,W_ENC); 

%varlist(&noenc,WO_ENC);  

 

/************************************************************************/ 

/*  Calculating recall at the highest scored percentile      */ 

/*  on the validation dataset                                */ 

/************************************************************************/ 

 

/* Please note that the recall statistics will be slightly different  

compared to Table 4 for tree-based models */ 
 

%macro dataset(name, model, list); 

 

 proc rank data=casuser.scored_&name out=ranked_&name groups=100 descending; 

 var p_target1; 

 ranks target_score_rank; 

 where train = 0; /* Change to 1 to calculate train data performance metrics */ 

 run; 

 

 proc sql;  

  select sum(target)  

 into :tot_val_cf  

 from ranked_&name; 

 quit;  

 

 proc sql; 

 create table top_1_pct_rank_&name (drop=target_score_rank) as select 
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 target_score_rank, 

 &model as Model, 

 sum(target)  as Tot_target_recall_&list, 

calculated Tot_target_recall_&list/&tot_val_cf. as Pct_target_recall_&list format 

percent8.1  

 

 from ranked_&name 

 

 where target_score_rank = 0 

 

 group by target_score_rank; 

 quit; 

%mend; 

 

%dataset(DT_W_ENC, 'Decision Tree', W_ENC); 

%dataset(DT_WO_ENC, 'Decision Tree', WO_ENC); 

%dataset(LR_W_ENC, 'Logistic Regression', W_ENC); 

%dataset(LR_WO_ENC, 'Logistic Regression', WO_ENC); 

%dataset(RF_W_ENC, 'Random Forest', W_ENC); 

%dataset(RF_WO_ENC, 'Random Forest', WO_ENC); 

%dataset(GB_W_ENC, 'Gradient Boosting', W_ENC); 

%dataset(GB_WO_ENC, 'Gradient Boosting', WO_ENC); 

%dataset(NN_W_ENC, 'Neural Network', W_ENC); 

%dataset(NN_WO_ENC, 'Neural Network', WO_ENC); 

 

/************************************************************************/ 

/*  Appending and joining recall datasets              */  

/*  to create final comparison dataset           */    

/************************************************************************/ 

 

data top_1_pct_recall_stats_w_enc; 

format Model $32.; 

set top_1_pct_rank_DT_w_Enc 

  top_1_pct_rank_LR_w_Enc 

  top_1_pct_rank_RF_w_Enc 

  top_1_pct_rank_GB_w_Enc 

  top_1_pct_rank_NN_w_Enc; 

run; 

 

data top_1_pct_recall_stats_wo_enc; 

format Model $32.; 

 set top_1_pct_rank_DT_wo_Enc 

  top_1_pct_rank_LR_wo_Enc 

  top_1_pct_rank_RF_wo_Enc 

  top_1_pct_rank_GB_wo_Enc 

  top_1_pct_rank_NN_wo_Enc; 

run; 

 

proc sql; 

create table top_1_pct_recall_summary as select 

a.Model, 

a.Tot_target_recall_w_Enc, 

a.Pct_target_recall_w_Enc, 

b.Tot_target_recall_wo_Enc, 

b.Pct_target_recall_wo_Enc 

 

from top_1_pct_recall_stats_w_enc as a left join top_1_pct_recall_stats_wo_enc as b on a.model = 

b.model; 

quit; 

 

proc datasets; delete top_1_pct_rank_DT_w_Enc top_1_pct_rank_LR_w_Enc top_1_pct_rank_RF_w_Enc  

   top_1_pct_rank_GB_w_Enc top_1_pct_rank_NN_w_Enc top_1_pct_rank_DT_wo_Enc 

   top_1_pct_rank_LR_wo_Enc top_1_pct_rank_RF_wo_Enc top_1_pct_rank_GB_wo_Enc 

   top_1_pct_rank_NN_wo_Enc ranked_DT_W_ENC ranked_DT_WO_ENC ranked_LR_W_ENC 

ranked_LR_WO_ENC ranked_RF_W_ENC ranked_RF_WO_ENC ranked_GB_W_ENC 

ranked_GB_WO_ENC ranked_NN_W_ENC ranked_NN_WO_ENC 

top_1_pct_recall_stats_w_enc top_1_pct_recall_stats_wo_enc;  

run; 
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APPENDIX C: ADDITIONAL MODEL PERFORMANCE TABLES 

 

Model Total Transactions 
with Target Hit 

Scored in Top 1% 
- With Encoded 

Variables 

Recall 
With 

Encoded 
Inputs 

Total Transactions 
with Target Hit 

Scored in Top 1% 
- Without Encoded 

Variables 

Recall 
Without 
Encoded 
Inputs 

Decision 
Tree 

750 92.5% 684 84.3% 

Logistic 

Regression 
674 83.1% 626 77.2% 

Random 
Forest 

811 100.0% 798 98.4% 

Gradient 
Boosting 

786 96.9% 752 92.7% 

Neural 
Network 

702 86.6% 643 79.3% 

 
Table 3. Recall stats detail for train dataset 
 

Model Total Transactions 
with Target Hit 

Scored in Top 1% 
- With Encoded 

Variables 

Recall 
With 

Encoded 
Inputs 

Total Transactions 
with Target Hit 

Scored in Top 1% 
- Without Encoded 

Variables 

Recall 
Without 
Encoded 
Inputs 

Decision 

Tree 
291 83.90% 258 74.40% 

Logistic 
Regression 

265 76.40% 253 72.90% 

Random 

Forest 
315 90.80% 296 85.30% 

Gradient 
Boosting 

307 88.50% 292 84.10% 

Neural 
Network 

275 79.30% 259 74.60% 

 
Table 4. Recall stats detail for validation dataset 
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