# python 3.7 or 3.8 are both fine.
conda create -n nhp python=3.x
conda activate nhp
# make sure that the pytorch cuda is consistent with the system cuda
# install pytorch via conda
https://pytorch.org/get-started/locally/
# install additional requirements
pip install -r requirements.txt
# install requirement for mesh rendering
pip install PyOpenGL PyOpenGL_accelerate
sudo apt-get install freeglut3-dev
# install spconv
# Sparse Convolution now provides easy installation via pip
# Go to the SpConv Github and install the proper version
https://github.com/traveller59/spconv
- To request the ZJU-Mocap dataset download link, please fill in the agreement, and email to the Neural Body author ([email protected]) and cc Xiaowei Zhou ([email protected]).
- Create a soft link:
ROOT=/path/to/Neural_Human_Performer cd $ROOT/data ln -s /path/to/zju_mocap zju_mocap
- Our framework uses the newly fitted SMPL parameters and vertices of the Neural Body.
Rename thenew_params
folder intoparams
and thenew_vertices
folder intovertices
. - Download the visibility maps at here.
- Create a soft link:
ROOT=/path/to/Neural_Human_Performer cd $ROOT/data ln -s /path/to/zju_rasterization zju_rasterization
- Change the file name format of the subject 313 and 315:
python lib/utils/modify_313_315_filename.py
- Go to SMPL website and sign up.
- Download the SMPL 1.0.0
- Create a directory with the following structure:
data
└── smplx
├── smpl
│ ├── SMPL_FEMALE.pkl
│ └── SMPL_MALE.pkl
│ └── SMPL_NEUTRAL.pkl
└── J_regressor_body25.npy