-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgraphrag.py
399 lines (330 loc) · 14.2 KB
/
graphrag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import json
from collections import OrderedDict
from dataclasses import dataclass
from operator import itemgetter
from typing import Dict, List, Tuple, Optional
from langchain.prompts.prompt import PromptTemplate
from langchain_community.graphs.neo4j_graph import Neo4jGraph
from langchain_community.vectorstores.neo4j_vector import Neo4jVector
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
embedding_model = OpenAIEmbeddings(model="text-embedding-ada-002")
llm = ChatOpenAI(temperature=0, model_name='gpt-4o', streaming=True)
t2c_llm = ChatOpenAI(temperature=0, model_name='gpt-4', streaming=True)
VECTOR_QUERY_HEAD = """CALL db.index.vector.queryNodes($index, $k, $embedding)
YIELD node, score
"""
PROMPT_CONTEXT_TEMPLATE = """
# Question
{input}
# Here is the context:
{context}
"""
T2C_PROMPT_TEMPLATE = '''
# Ask:
{input}
Remove english explanation, provide just the Cypher code.
'''
T2C_RESPONSE_PROMPT_TEMPLATE = """
Transform below data to human readable format with bullets if needed, And summarize it in a sentence or two if possible
# Sample Ask and Response :
## Ask:
Get distinct watch terms ?
## Response:
[\"alert\",\"attorney\",\"bad\",\"canceled\",\"charge\"]
## Output:
Here are the distinct watch terms
- "alert"
- "attorney"
- "bad"
- "canceled"
- "charge"
# Generate similar output for below Ask and Response
## Ask
${input}
## Response:
${context}
## Output:
"""
def format_doc(doc: Document) -> Dict:
res = OrderedDict()
res['text'] = doc.page_content
res.update(doc.metadata)
return res
def format_res_dicts(d: Dict) -> Dict:
res = OrderedDict()
for k, v in d.items():
if k != "metadata":
res[k] = v
for k, v in d['metadata'].items():
if v is not None:
res[k] = v
return res
def remove_key_from_dict(x, keys_to_remove):
if isinstance(x, dict):
x_clean = dict()
for k, v in x.items():
if k not in keys_to_remove:
x_clean[k] = remove_key_from_dict(v, keys_to_remove)
elif isinstance(x, list):
x_clean = [remove_key_from_dict(i, keys_to_remove) for i in x]
else:
x_clean = x
return x_clean
@dataclass(frozen=True)
class Neo4jCredentials:
uri: str
password: str
username: str = "neo4j"
database: str = "neo4j"
class GraphRAGChain:
def __init__(self,
vector_index_name: str,
prompt_instructions: str,
graph_retrieval_query: str = None,
k: int = 5,
neo4j_uri: Optional[str] = None,
neo4j_username: Optional[str] = None,
neo4j_password: Optional[str] = None,
neo4j_database: Optional[str] = None
):
self.store = Neo4jVector.from_existing_index(
embedding=embedding_model,
url=neo4j_uri,
username=neo4j_username,
password=neo4j_password,
database=neo4j_database,
index_name=vector_index_name,
retrieval_query=graph_retrieval_query)
self.retriever = self.store.as_retriever(search_kwargs={"k": k})
self.prompt = PromptTemplate.from_template(prompt_instructions + PROMPT_CONTEXT_TEMPLATE)
self.chain = ({'context': self.retriever | self._format_and_save_context, 'input': RunnablePassthrough()}
| self.prompt
| llm
| StrOutputParser())
self.last_used_context = None
self.k = k
default_retrieval = (
f"RETURN node.`{self.store.text_node_property}` AS text, score, "
f"node {{.*, `{self.store.text_node_property}`: Null, "
f"`{self.store.embedding_node_property}`: Null, id: Null }} AS metadata"
)
self.retrieval_query = (
self.store.retrieval_query if self.store.retrieval_query else default_retrieval
)
def _format_and_save_context(self, docs) -> str:
res = json.dumps([format_doc(d) for d in docs], indent=1)
self.last_used_context = res
return res
def invoke(self, prompt: str):
return self.chain.invoke(prompt)
def get_full_retrieval_query_template(self):
query_head = """CALL db.index.vector.queryNodes($index, $k, $embedding)
YIELD node, score
"""
return query_head + self.retrieval_query
def get_full_retrieval_query(self, prompt: str):
query_head = f"""WITH {self.store.embedding.embed_query(prompt)}
AS queryVector
CALL db.index.vector.queryNodes('{self.store.index_name}', {self.k}, queryVector)
YIELD node, score
"""
return query_head + self.retrieval_query
def get_browser_queries(self, prompt: str):
params_query = f":params{{index:'{self.store.index_name}', k:{self.k}, embedding:{self.store.embedding.embed_query(prompt)}}}"
query_head = """CALL db.index.vector.queryNodes($index, $k, $embedding)
YIELD node, score
"""
return {'params_query': params_query, 'query_body': query_head + self.retrieval_query}
class GraphRAGText2CypherChain:
def __init__(self,
prompt_instructions: str,
properties_to_remove_from_cypher_res: List = None,
neo4j_uri: Optional[str] = None,
neo4j_username: Optional[str] = None,
neo4j_password: Optional[str] = None,
neo4j_database: Optional[str] = None
):
self.store = Neo4jGraph(
url=neo4j_uri,
username=neo4j_username,
password=neo4j_password,
database=neo4j_database
)
self.t2c_prompt = PromptTemplate.from_template(prompt_instructions + T2C_PROMPT_TEMPLATE)
self.prompt = PromptTemplate.from_template(T2C_RESPONSE_PROMPT_TEMPLATE)
self.chain = ({
'context': self.t2c_prompt | t2c_llm | StrOutputParser() | self._format_and_save_query | self.store.query | self._format_and_save_context,
'input': RunnablePassthrough()
}
| self.prompt
| llm
| StrOutputParser())
self.last_used_context = None
self.last_retrieval_query = None
self.properties_to_remove_from_cypher_res = properties_to_remove_from_cypher_res
def _format_and_save_context(self, docs) -> str:
if self.properties_to_remove_from_cypher_res is not None:
docs = remove_key_from_dict(docs, self.properties_to_remove_from_cypher_res)
res = json.dumps(docs, indent=1)
self.last_used_context = res
return res
def _format_and_save_query(self, s) -> str:
self.last_retrieval_query = s
return s
def invoke(self, prompt: str):
return self.chain.invoke(prompt)
class GraphRAGPreFilterChain:
def __init__(self,
vector_index_name: str,
prompt_instructions: str = '',
graph_prefilter_query: str = 'MATCH(node) WITH node, {} AS prefilterMetadata',
k: int = 5,
neo4j_uri: Optional[str] = None,
neo4j_username: Optional[str] = None,
neo4j_password: Optional[str] = None,
neo4j_database: Optional[str] = None
):
self.vectorStore = Neo4jVector.from_existing_index(
embedding=embedding_model,
url=neo4j_uri,
username=neo4j_username,
password=neo4j_password,
database=neo4j_database,
index_name=vector_index_name)
self.store = Neo4jGraph(
url=neo4j_uri,
username=neo4j_username,
password=neo4j_password,
database=neo4j_database
)
self.embedding_model = embedding_model
self.vector_search_template = f"""
WITH node, prefilterMetadata, vector.similarity.cosine($embedding, node.`{self.vectorStore.embedding_node_property}`) AS score
WHERE score IS NOT NULL
WITH node.`{self.vectorStore.text_node_property}` AS text,
score,
node {{.*, `{self.vectorStore.text_node_property}`: Null, `{self.vectorStore.embedding_node_property}`: Null, id: Null}} AS searchMetadata,
prefilterMetadata
RETURN text, score, apoc.map.merge(searchMetadata, prefilterMetadata) AS metadata
ORDER by score DESC LIMIT toInteger($k)
"""
self.retrieval_query_template = graph_prefilter_query + '\n' + self.vector_search_template
self.prompt = PromptTemplate.from_template(prompt_instructions + PROMPT_CONTEXT_TEMPLATE)
self.chain = ({
'context': (lambda x: x['retrieverInput']) | RunnableLambda(
self.retriever) | self._format_and_save_context,
'input': (lambda x: x['prompt'])
}
| self.prompt
| llm
| StrOutputParser())
self.last_used_context = None
self.last_retrieval_query = None
self.last_retrieval_query_params = None
self.k = k
def _format_and_save_context(self, docs) -> str:
res = json.dumps([format_res_dicts(doc) for doc in docs], indent=1)
self.last_used_context = res
return res
def _format_and_save_query(self, template: str, params: Dict):
self.last_retrieval_query = template
self.last_retrieval_query_params = params
def get_last_browser_queries(self):
params_string = json.dumps(self.last_retrieval_query_params)
params_query = f":params {params_string}"
return {'params_query': params_query,
'params_url_query': f'/browser?cmd=params&arg={params_string}',
'query_body': self.last_retrieval_query}
def retriever(self, x):
query_vector = self.embedding_model.embed_query(x['searchPrompt'])
params = {**x['queryParams'], **{'index': self.vectorStore.index_name, 'k': self.k, 'embedding': query_vector}}
res = self.store.query(self.retrieval_query_template, params=params)
self._format_and_save_query(self.retrieval_query_template, params)
return res
def invoke(self, prompt: str, retrieval_search_text: str = None, query_params: Dict = None):
if retrieval_search_text is None:
retrieval_search_text = prompt
if query_params is None:
query_params = dict()
return self.chain.invoke(
{'retrieverInput': {'searchPrompt': retrieval_search_text, 'queryParams': query_params},
'prompt': prompt})
class DynamicGraphRAGChain:
def __init__(self,
vector_index_name: str,
prompt_instructions: str = '',
graph_retrieval_query: str = None,
k: int = 5,
neo4j_uri: Optional[str] = None,
neo4j_username: Optional[str] = None,
neo4j_password: Optional[str] = None,
neo4j_database: Optional[str] = None
):
self.vectorStore = Neo4jVector.from_existing_index(
embedding=embedding_model,
url=neo4j_uri,
username=neo4j_username,
password=neo4j_password,
database=neo4j_database,
index_name=vector_index_name,
retrieval_query=graph_retrieval_query)
self.store = Neo4jGraph(
url=neo4j_uri,
username=neo4j_username,
password=neo4j_password,
database=neo4j_database,
)
self.embedding_model = embedding_model
self.prompt = PromptTemplate.from_template(prompt_instructions + PROMPT_CONTEXT_TEMPLATE)
self.chain = ({
'context': (lambda x: x['retrieverInput']) | RunnableLambda(
self.retriever) | self._format_and_save_context,
'input': (lambda x: x['prompt'])
}
| self.prompt
| llm
| StrOutputParser())
self.k = k
default_retrieval = (
f"RETURN node.`{self.vectorStore.text_node_property}` AS text, score, "
f"node {{.*, `{self.vectorStore.text_node_property}`: Null, "
f"`{self.vectorStore.embedding_node_property}`: Null, id: Null }} AS metadata"
)
self.retrieval_query = (
self.vectorStore.retrieval_query if self.vectorStore.retrieval_query else default_retrieval
)
self.full_retrieval_query_template = VECTOR_QUERY_HEAD + self.retrieval_query
self.last_used_context = None
self.last_retrieval_query = None
self.last_retrieval_query_params = None
def _format_and_save_context(self, docs) -> str:
res = json.dumps([format_res_dicts(doc) for doc in docs], indent=1)
self.last_used_context = res
return res
def _format_and_save_query(self, template: str, params: Dict):
self.last_retrieval_query = template
self.last_retrieval_query_params = params
def get_last_browser_queries(self):
params_string = json.dumps(self.last_retrieval_query_params)
params_query = f":params {params_string}"
return {'params_query': params_query,
'params_url_query': f'/browser?cmd=params&arg={params_string}',
'query_body': self.last_retrieval_query}
def retriever(self, x):
query_vector = self.embedding_model.embed_query(x['searchPrompt'])
params = {**x['queryParams'], **{'index': self.vectorStore.index_name, 'k': self.k, 'embedding': query_vector}}
res = self.store.query(self.full_retrieval_query_template, params=params)
self._format_and_save_query(self.full_retrieval_query_template, params)
return res
def invoke(self, prompt: str, retrieval_search_text: str = None, query_params: Dict = None):
if retrieval_search_text is None:
retrieval_search_text = prompt
if query_params is None:
query_params = dict()
return self.chain.invoke({
'retrieverInput': {'searchPrompt': retrieval_search_text, 'queryParams': query_params},
'prompt': prompt
})