-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquickdiags
executable file
·600 lines (522 loc) · 21.4 KB
/
quickdiags
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#!/usr/bin/env python
# Model parameters to assume for this data:
tracers = ('CO2','CH4','TCO','CFF','CBB','CLA','COC')
nlev = 79 # Number of thermodynamic levels
debug = False
grav = .980616e+1 # Taken from GEM-MACH file chm_consphychm_mod.ftn90
from argparse import ArgumentParser
import subprocess
parser = ArgumentParser(description='Performs some quick diagnostics on EC-CAS model output.')
parser.add_argument('infile', help='Input file or directory to process.')
parser.add_argument('outdir', nargs='?', default='.', help='Where to put the output files. Default is the current directory.')
parser.add_argument('--label', help='The name of the experiment. If not specified, then a name will be determined from the input directory structure.')
parser.add_argument('--nthreads', type=int, default=int(subprocess.check_output('nproc')), help='Number of threads to use for doing the calcuations. Default is currently %(default)s.')
args = parser.parse_args()
try:
import fstd2nc
import rpnpy.librmn.all as rmn
import rpnpy.vgd.all as vgd
except ImportError:
parser.error("You need to run the following command before using the script:\n\n. ssmuse-sh -p eccc/crd/ccmr/EC-CAS/master/fstd2nc_0.20180821.0\n")
from os.path import dirname
if args.label is None:
dirs = dirname(args.infile).split('/')
while dirs[-1] in ('model','pres','time_series','','.'):
dirs.pop()
args.label = dirs[-1]
import netCDF4
# Helper functions
# Class for handling dependencies on calculations.
class Calc (object):
__slots__ = ('func','inputs','callbacks','__weakref__','lock')
def __init__ (self, func, *inputs):
import weakref
from threading import Lock
self.func = func
self.inputs = list(inputs)
self.lock = Lock()
for inp in inputs:
if isinstance(inp,Calc):
if debug: print '%s will call back %s'%(inp,func.func_name)
inp.callbacks.add(self)
self.callbacks = weakref.WeakSet()
def trigger (self):
if debug: print 'trigger %s? %s'%(self.func.func_name, [not isinstance(inp,Calc) for inp in self.inputs])
if not any(isinstance(inp,Calc) for inp in self.inputs):
if debug: print 'triggered'
data = self.func(*self.inputs)
self._do_callback (data)
else:
if debug: print 'not triggered'
def _do_callback (self, data):
if debug: print 'callbacks:', list(self.callbacks)
for callback in self.callbacks:
ids = list(map(id,callback.inputs))
if id(self) not in ids:
print 'weird', self.func, callback.func, id(self), ids, map(type,callback.inputs)
return
i = ids.index(id(self))
with callback.lock:
callback.inputs[i] = data
callback.trigger()
def __del__ (self):
if debug: print 'deleting %s'%(self.func.func_name)
# Decorate for turning a regular function into one that handles dependent
# calculations.
import weakref
def calc (func, lookup=weakref.WeakValueDictionary()):
from functools import wraps
@wraps(func)
def f (*args):
key = (func,tuple(args))
if debug and key in lookup:
print 'reusing existing %s (%s)'%(func.func_name, ','.join(map(str,args)))
elif debug:
print 'generating new %s (%s)'%(func.func_name, ','.join(map(str,args)))
result = lookup.get(key,None)
if result is None:
result = Calc(func,*args)
lookup[key] = result
return result
return f
del weakref
# Keep track of all records that are used.
all_records = set()
from threading import Lock
read_lock = Lock()
@calc
def _read (rec_id):
with read_lock:
if debug: print 'read'
all_records.remove(rec_id)
return np.asarray(fstluk(rec_id),dtype='float64')
def read (rec_id):
all_records.add(rec_id)
return _read (rec_id)
# Object for managing writes into a netCDF4 dataset.
class Writer (Calc):
def __init__ (self, dataset):
Calc.__init__(self,None)
self.dataset = dataset
def trigger (self):
if not any(isinstance(inp,Calc) for inp in self.inputs):
if debug: print 'close file'
self.dataset.close()
def write (self, varname, ind, data):
if not isinstance(data,Calc):
self.dataset[varname][ind] = data
return
inp = _write (self.dataset[varname], ind, data)
self.inputs.append(inp)
inp.callbacks.add(self)
def __del__ (self):
return
# Object for doing an individual write.
from threading import Lock
write_lock = Lock()
@calc
def _write (var, ind, data):
with write_lock:
if debug: print 'write'
var[ind] = data
@calc
def logp (p0):
if debug: print 'logp'
import numpy as np
return np.log(p0/1000.)
@calc
def log_pres (a, b, s):
if debug: print 'log_pres'
import numpy as np
return a+b*s
@calc
def pres (a, b, s):
if debug: print 'pres'
import numpy as np
return np.exp(a+b*s)
@calc
def layer_mass (c,q,p_above,p_below):
if debug: print 'layer mass'
return c*(1-q)*(p_below-p_above)
@calc
def area_integrate (x, dx, scale):
if debug: print 'area integrate'
import numpy as np
# Remove repeated longitude
x = x[:,:-1]
dx = dx[:,:-1]
return np.sum(x*dx*scale)
@calc
def layer_sum (*inputs):
if debug: print 'layer sum'
return sum(inputs)
@calc
def quotient (numerator, denominator):
if debug: print 'quotient'
return numerator / denominator
@calc
def stack (*inputs):
if debug: print 'stack'
import numpy as np
return np.stack(inputs)
@calc
def vinterp (x, z, N):
if debug: print 'vinterp'
import numpy as np
# Number of model levels and horizontal grid cells.
nlev, nj, ni = x.shape
ninj = ni*nj
# Workspace for building the interpolated values.
work = np.zeros((N+2,ninj), dtype=x.dtype)
x = x.reshape(nlev,ninj)
z = z.reshape(nlev,ninj)
# Calculate rates of change
dxdz = np.zeros((nlev+1,ninj),dtype=x.dtype)
dxdz[1:-1] = np.diff(x,axis=0)
dxdz[1:-1] /= np.diff(z,axis=0)
ddxdz = np.diff(dxdz,axis=0)
ind = np.arange(ninj)
# Loop over one model level at a time.
# The advanced numpy indexing doesn't work well if there are repeated
# indices, such as repeated target levels.
for i in range(nlev):
c = np.ceil(z[i]).astype(int)
c[c<0] = 0
c[c>N] = N
# Mark the transition between model levels.
work[c,ind] += (c-z[i])*ddxdz[i]
work[c+1,ind] -= (c-1-z[i])*ddxdz[i]
# Set the lower boundary value.
if i == 0:
work[c,ind] += x[0]
work[c+1,ind] -= x[0]
c[c==z[i]] += 1
work[c,ind] = np.float('nan')
np.cumsum(work,axis=0,out=work) # magic
np.cumsum(work,axis=0,out=work) # more magic
work[work==0] = np.float('nan')
return work[:N].reshape(N,nj,ni)
@calc
def zonal_mean (x):
if debug: print 'zonal mean'
import numpy as np
# Remove repeated longitude
x = x[...,:-1]
return np.nanmean(x,axis=-1)
import numpy as np
fstd2nc.stdout.streams = ('error',)
if not debug:
rmn.fstopt('MSGLVL','ERRORS')
b = fstd2nc.Buffer(args.infile, ignore_diag_level=True, rpnstd_metadata=True, progress=True, unique_names=False)
# Call c_fstluk directly
all_keys = np.array(b._headers['key'])
all_ni = np.array(b._headers['ni'])
all_nj = np.array(b._headers['nj'])
all_nk = np.array(b._headers['nk'])
all_shape = list(zip(all_ni,all_nj,all_nk))
all_datyp = np.array(b._headers['datyp'])
all_nbits = np.array(b._headers['nbits'])
all_file_id = np.array(b._headers['file_id'])
def fstluk (rec_id):
import ctypes as _ct
import numpy.ctypeslib as _npc
from rpnpy.librmn import proto as _rp
from rpnpy.librmn.fstd98 import dtype_fst2numpy
import numpy as np
file_id = all_file_id[rec_id]
b._open(file_id)
key = (all_keys[rec_id]<<10) + b._opened_librmn_index
shape = all_shape[rec_id]
dtype = dtype_fst2numpy(int(all_datyp[rec_id]),int(all_nbits[rec_id]))
_rp.c_fstluk.argtypes = (_npc.ndpointer(dtype=dtype), _ct.c_int,
_ct.POINTER(_ct.c_int), _ct.POINTER(_ct.c_int),
_ct.POINTER(_ct.c_int))
data = np.empty(shape, dtype=dtype, order='FORTRAN')
(cni, cnj, cnk) = (_ct.c_int(), _ct.c_int(), _ct.c_int())
istat = _rp.c_fstluk(data, key, _ct.byref(cni), _ct.byref(cnj),
_ct.byref(cnk))
if istat < 0:
raise FSTDError()
return data.transpose().squeeze()
# Get vertical parameters for this data.
vgd_id = vgd.vgd_read(b._opened_funit)
am = vgd.vgd_get(vgd_id,'CA_M')[:-1]
bm = vgd.vgd_get(vgd_id,'CB_M')[:-1]
at = vgd.vgd_get(vgd_id,'CA_T')[:-2]
bt = vgd.vgd_get(vgd_id,'CB_T')[:-2]
assert len(am) == nlev+1
assert len(at) == nlev
assert np.all(am[:-1] < at)
assert np.all(am[1:] > at)
# Structure the records into time/level dimensions.
b._makevars()
vardict = {v.name:v for v in b._varlist}
# Get grid cell areas.
dx = read(vardict['DX'].record_id[0])
# Select records with full vertical extent
def get_3d_recs (recs):
return recs[np.all(recs>=0, axis=1),:]
# Get unique timesteps from records
def get_timesteps (recs):
if recs.ndim > 1:
recs = recs[:,0]
return set(b._headers[recs]['datev'])
# Limit records to those that fall on particular timesteps
def limit_timesteps (recs, target_timesteps):
if recs.ndim > 1:
timesteps = b._headers[recs[:,0]]['datev']
else:
timesteps = b._headers[recs]['datev']
return recs[np.isin(timesteps,list(target_timesteps))]
##############################################################################
# Column and mass diagnostics
# Find timesteps available for mass diagnostics.
mass_timesteps = get_timesteps(get_3d_recs(vardict['HU'].record_id)) \
& get_timesteps(vardict['P0'].record_id)
HU_recs = limit_timesteps(get_3d_recs(vardict['HU'].record_id), mass_timesteps)
P0_recs = limit_timesteps(vardict['P0'].record_id, mass_timesteps)
# Find the available timesteps and levels.
mass_timesteps = b._headers[HU_recs[:,0]]['datev']
mass_levels = b._headers[HU_recs[0,:]]['level']
assert np.all(vgd.vgd_get(vgd_id,'VIPT')[:-2] == b._headers[HU_recs[0,:]]['ip1'])
# Determine column / mass calculations.
total_filename = "%s/%s_totalmass.nc"%(args.outdir,args.label)
tropo_filename = "%s/%s_tropomass.nc"%(args.outdir,args.label)
colavg_filename = "%s/%s_column_avg.nc"%(args.outdir,args.label)
tropoavg_filename = "%s/%s_tropocolumn_avg.nc"%(args.outdir,args.label)
totalmass = netCDF4.Dataset(total_filename,'w')
tropomass = netCDF4.Dataset(tropo_filename,'w')
colavg = netCDF4.Dataset(colavg_filename,'w')
tropoavg = netCDF4.Dataset(tropoavg_filename,'w')
times = fstd2nc.mixins.dates.stamp2datetime(mass_timesteps)
times = np.array(times,dtype='datetime64[s]')
for dataset in totalmass, tropomass:
dataset.createDimension('time', None)
dataset.createVariable(varname='time', datatype='float32', dimensions=('time',))
dataset['time'].setncatts({'units':'hours since 2015-01-01'})
dataset['time'][:] = netCDF4.date2num(times.tolist(),units='hours since 2015-01-01')
for tracer in tracers:
if tracer not in vardict: continue
dataset.createVariable(varname=tracer, datatype='float64', dimensions=('time',))
dataset.createVariable(varname='air', datatype='float64', dimensions=('time',))
dataset.createVariable(varname='dry_air', datatype='float64', dimensions=('time',))
for dataset in colavg, tropoavg:
dataset.createDimension('time', None)
dataset.createVariable(varname='time', datatype='float32', dimensions=('time',))
dataset['time'].setncatts({'units':'hours since 2015-01-01'})
dataset['time'][:] = netCDF4.date2num(times.tolist(),units='hours since 2015-01-01')
dataset.createDimension('lat', all_nj[P0_recs[0]])
dataset.createVariable(varname='lat', datatype='float32', dimensions=('lat',))
dataset['lat'].setncatts({'units':'degrees_north'})
dataset['lat'][:] = vardict['P0'].axes[-2].array
dataset.createDimension('lon', all_ni[P0_recs[0]])
dataset.createVariable(varname='lon', datatype='float32', dimensions=('lon',))
dataset['lon'].setncatts({'units':'degrees_east'})
dataset['lon'][:] = vardict['P0'].axes[-1].array
for tracer in tracers:
if tracer not in vardict: continue
dataset.createVariable(varname=tracer, datatype='float64', dimensions=('time','lat','lon'))
totalmass = Writer(totalmass)
tropomass = Writer(tropomass)
colavg = Writer(colavg)
tropoavg = Writer(tropoavg)
# Dry-air mass
dryair_sum_save = [] # Saved for use later.
dryair_tropo_sum_save = [] # Saved for use later.
for t in range(len(mass_timesteps)):
dryair_layers = []
dryair_tropo_layers = []
for k in range(len(mass_levels)):
q = read(HU_recs[t,k])
s = logp(read(P0_recs[t]))
p_above = pres(am[k],bm[k],s)
p_below = pres(am[k+1],bm[k+1],s)
layer = layer_mass(1,q,p_above,p_below)
dryair_layers.append(layer)
if mass_levels[k] > 0.2:
dryair_tropo_layers.append(layer)
dryair_sum = layer_sum(*dryair_layers)
dryair_sum_save.append(dryair_sum)
mass = area_integrate(dryair_sum, dx, 1/grav*1E-12)
totalmass.write ('dry_air', t, mass)
dryair_tropo_sum = layer_sum(*dryair_tropo_layers)
dryair_tropo_sum_save.append(dryair_tropo_sum)
mass = area_integrate(dryair_tropo_sum, dx, 1/grav*1E-12)
tropomass.write ('dry_air', t, mass)
# Total air mass
for t in range(len(mass_timesteps)):
s = logp(read(P0_recs[t]))
p_above = pres(am[0],bm[0],s)
p_below = pres(am[nlev],bm[nlev],s)
mass = layer_mass(1,0,p_above,p_below)
mass = area_integrate(mass, dx, 1/grav*1E-12)
totalmass.write ('air', t, mass)
mass = layer_mass(1,0,20000,p_below)
mass = area_integrate(mass, dx, 1/grav*1E-12)
tropomass.write ('air', t, mass)
# Tracer mass
for tracer in tracers:
if tracer not in vardict: continue
recs = limit_timesteps(get_3d_recs(vardict[tracer].record_id), mass_timesteps)
for it,t in enumerate(np.searchsorted(mass_timesteps, b._headers[recs[:,0]]['datev'])):
layers = []
tropo_layers = []
for ik,k in enumerate(np.searchsorted(mass_levels, b._headers[recs[0,:]]['level'])):
c = read(recs[it,ik])
q = read(HU_recs[t,k])
s = logp(read(P0_recs[t]))
p_above = pres(am[k],bm[k],s)
p_below = pres(am[k+1],bm[k+1],s)
layer = layer_mass(c,q,p_above,p_below)
layers.append(layer)
if mass_levels[k] > 0.2:
tropo_layers.append(layer)
tracer_sum = layer_sum(*layers)
mass = area_integrate(tracer_sum, dx, 1E-9/grav*1E-12)
totalmass.write (tracer, t, mass)
dryair_sum = dryair_sum_save[t]
tracer_col = quotient(tracer_sum, dryair_sum)
colavg.write (tracer, t, tracer_col)
tracer_sum = layer_sum(*tropo_layers)
mass = area_integrate(tracer_sum, dx, 1E-9/grav*1E-12)
tropomass.write (tracer, t, mass)
dryair_tropo_sum = dryair_tropo_sum_save[t]
tracer_col = quotient(tracer_sum, dryair_tropo_sum)
tropoavg.write (tracer, t, tracer_col)
del dryair_sum_save, dryair_tropo_sum_save
##############################################################################
# Zonal diagnostics
# Find timesteps available for zonal mean diagnostics on gph.
if 'GZ' in vardict:
gph_timesteps = get_timesteps(get_3d_recs(vardict['GZ'].record_id))
tracer_timesteps = set.union(*[get_timesteps(get_3d_recs(vardict[tracer].record_id)) for tracer in tracers if tracer in vardict])
gph_timesteps = gph_timesteps & tracer_timesteps
# Get thermodynamic GZ records.
GZ_recs = limit_timesteps(get_3d_recs(vardict['GZ'].record_id), gph_timesteps)[:,1::2]
# Find the available timesteps and levels.
gph_timesteps = b._headers[GZ_recs[:,0]]['datev']
gph_levels = b._headers[GZ_recs[0,:]]['level']
assert np.all(vgd.vgd_get(vgd_id,'VIPT')[:-2] == b._headers[GZ_recs[0,:]]['ip1'])
# Determine zonal mean calculations.
filename = "%s/%s_zonalmean_gph.nc"%(args.outdir,args.label)
zonalmean_gph = netCDF4.Dataset(filename,'w')
times = fstd2nc.mixins.dates.stamp2datetime(gph_timesteps)
times = np.array(times,dtype='datetime64[s]')
zonalmean_gph.createDimension('time', None)
zonalmean_gph.createVariable(varname='time', datatype='float32', dimensions=('time',))
zonalmean_gph['time'].setncatts({'units':'hours since 2015-01-01'})
zonalmean_gph['time'][:] = netCDF4.date2num(times.tolist(),units='hours since 2015-01-01')
zonalmean_gph.createDimension('height', 68)
zonalmean_gph.createVariable(varname='height', datatype='float32', dimensions=('height',))
zonalmean_gph['height'].setncatts({'units':'km'})
zonalmean_gph['height'][:] = np.arange(68)[::-1]
zonalmean_gph.createDimension('lat', all_nj[GZ_recs[0,0]])
zonalmean_gph.createVariable(varname='lat', datatype='float32', dimensions=('lat',))
zonalmean_gph['lat'].setncatts({'units':'degrees_north'})
zonalmean_gph['lat'][:] = vardict['GZ'].axes[-2].array
for tracer in tracers:
if tracer not in vardict: continue
zonalmean_gph.createVariable(varname=tracer, datatype='float64', dimensions=('time','height','lat'))
zonalmean_gph = Writer(zonalmean_gph)
gph_indices = calc(lambda gz: 67-gz/100.)
for tracer in tracers:
if tracer not in vardict: continue
recs = limit_timesteps(get_3d_recs(vardict[tracer].record_id), gph_timesteps)
for it,t in enumerate(np.searchsorted(gph_timesteps, b._headers[recs[:,0]]['datev'])):
x = []
gz = []
for ik,k in enumerate(np.searchsorted(gph_levels, b._headers[recs[0,:]]['level'])):
x.append(read(recs[it,ik]))
gz.append(read(GZ_recs[t,k]))
x = stack(*x)
gz = stack(*gz)
z = gph_indices(gz)
zonalmean_gph.write (tracer, t, zonal_mean(vinterp (x, z, 68)))
# Find timesteps available for zonal mean diagnostics on pressure levels.
pres_timesteps = get_timesteps(vardict['P0'].record_id)
tracer_timesteps = set.union(*[get_timesteps(get_3d_recs(vardict[tracer].record_id)) for tracer in tracers if tracer in vardict])
pres_timesteps = pres_timesteps & tracer_timesteps
P0_recs = limit_timesteps(vardict['P0'].record_id, pres_timesteps)
# Find the available timesteps and levels.
pres_timesteps = b._headers[P0_recs[:]]['datev']
# Determine zonal mean calculations.
filename = "%s/%s_zonalmean_plev.nc"%(args.outdir,args.label)
tropo_filename = "%s/%s_zonalmean_tropo.nc"%(args.outdir,args.label)
zonalmean_plev = netCDF4.Dataset(filename,'w')
zonalmean_tropo = netCDF4.Dataset(tropo_filename,'w')
times = fstd2nc.mixins.dates.stamp2datetime(pres_timesteps)
times = np.array(times,dtype='datetime64[s]')
zonalmean_plev.createDimension('time', None)
zonalmean_plev.createVariable(varname='time', datatype='float32', dimensions=('time',))
zonalmean_plev['time'].setncatts({'units':'hours since 2015-01-01'})
zonalmean_plev['time'][:] = netCDF4.date2num(times.tolist(),units='hours since 2015-01-01')
zonalmean_plev.createDimension('pres', 100)
zonalmean_plev.createVariable(varname='pres', datatype='float32', dimensions=('pres',))
zonalmean_plev['pres'].setncatts({'units':'hPa','positive':'down'})
zonalmean_plev['pres'][:] = np.logspace(-1,3,100)
zonalmean_plev.createDimension('lat', all_nj[P0_recs[0]])
zonalmean_plev.createVariable(varname='lat', datatype='float32', dimensions=('lat',))
zonalmean_plev['lat'].setncatts({'units':'degrees_north'})
zonalmean_plev['lat'][:] = vardict['P0'].axes[-2].array
zonalmean_tropo.createDimension('time', None)
zonalmean_tropo.createVariable(varname='time', datatype='float32', dimensions=('time',))
zonalmean_tropo['time'].setncatts({'units':'hours since 2015-01-01'})
zonalmean_tropo['time'][:] = netCDF4.date2num(times.tolist(),units='hours since 2015-01-01')
zonalmean_tropo.createDimension('pres', 81)
zonalmean_tropo.createVariable(varname='pres', datatype='float32', dimensions=('pres',))
zonalmean_tropo['pres'].setncatts({'units':'hPa','positive':'down'})
zonalmean_tropo['pres'][:] = np.linspace(200,1000,81)
zonalmean_tropo.createDimension('lat', all_nj[P0_recs[0]])
zonalmean_tropo.createVariable(varname='lat', datatype='float32', dimensions=('lat',))
zonalmean_tropo['lat'].setncatts({'units':'degrees_north'})
zonalmean_tropo['lat'][:] = vardict['P0'].axes[-2].array
for tracer in tracers:
if tracer not in vardict: continue
zonalmean_plev.createVariable(varname=tracer, datatype='float64', dimensions=('time','pres','lat'))
zonalmean_tropo.createVariable(varname=tracer, datatype='float64', dimensions=('time','pres','lat'))
zonalmean_plev = Writer(zonalmean_plev)
zonalmean_tropo = Writer(zonalmean_tropo)
pres_indices = calc(lambda lp: 99*(lp-np.log(100)-np.log(0.1))/(np.log(1000)-np.log(0.1)))
tropo_indices = calc(lambda p: 80*(p/100-200)/(1000-200))
for tracer in tracers:
if tracer not in vardict: continue
recs = limit_timesteps(get_3d_recs(vardict[tracer].record_id), pres_timesteps)
for it,t in enumerate(np.searchsorted(pres_timesteps, b._headers[recs[:,0]]['datev'])):
x = []
lp = []
p = []
for ik,k in enumerate(np.searchsorted(gph_levels, b._headers[recs[0,:]]['level'])):
x.append(read(recs[it,ik]))
s = logp(read(P0_recs[t]))
lp.append(log_pres(at[k],bt[k],s))
p.append(pres(at[k],bt[k],s))
x = stack(*x)
lp = stack(*lp)
p = stack(*p)
z = pres_indices(lp)
zonalmean_plev.write (tracer, t, zonal_mean(vinterp (x, z, 100)))
z = tropo_indices(p)
zonalmean_tropo.write (tracer, t, zonal_mean(vinterp (x, z, 81)))
if debug: print 'starting I/O'
# Ignore numpy warnings about things like "mean of empty slice".
import warnings
warnings.simplefilter("ignore")
# Read DX first.
# These records seem to be found at the end of the RPN file, so all the other
# operations will be waiting a long time if this isn't pre-loaded.
dx.trigger()
pbar = fstd2nc.mixins._ProgressBar("Calculating diagnostics", suffix='%(percent)d%% [%(myeta)s]', max=len(all_records))
from multiprocessing.pool import ThreadPool
from threading import Lock
pool = ThreadPool(args.nthreads)
pbar_lock = Lock()
def update_pbar (stuff):
with pbar_lock:
pbar.next()
for rec_id in sorted(all_records):
pool.apply_async(read(rec_id).trigger, callback=update_pbar)
#read(rec_id).trigger()
#if not debug: pbar.next()
pool.close()
pool.join()
pbar.finish()