generated from ncl-icb-analytics/ncl_project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_regression_ae_admit.R
69 lines (58 loc) · 2.62 KB
/
final_regression_ae_admit.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Final tidy version of script for monthly data for deprivation indicators
library(dplyr)
library(MASS)
library(broom)
# Database connection. Pulls the connection string from your environmental variable called SANDPIT
library(DBI)
con <- dbConnect(odbc::odbc(), .connection_string = Sys.getenv("SANDPIT"))
sql<- "select
--A.month,
--A.month_no,
A.GP_Borough_Name,
A.[PCN_NAME],
A.[PRACTICE_CODE],
A.[PRACTICE_NAME],A.Quintile, A.ageband, A.gender, sum(PERSONS) as PERSONS,
case when sum(AE_ATTENDS) is null then 0 else sum(AE_ATTENDS) end as IP_FROM_AE
from [Data_Lab_SBI].[dbo].[ML_BS_MPI] A
left join [Data_Lab_SBI].[dbo].[ML_BS_AE] B
on A.month_no = B.month_no
and A.GP_Borough_Name=B.GP_Borough_Name
and A.Quintile = B.Quintile
and A.ageband = B.ageband
and A.gender = B.gender
and A.[PCN_NAME] = B.[PCN_NAME]
and A.[PRACTICE_CODE]= B.[PRACTICE_CODE]
and A.[PRACTICE_NAME]= B.[PRACTICE_NAME]
and A.LSOA = B.LSOA
where A.quintile<>99
and A.gender <> 'U'
and A.ageband <105
group by
--A.month,
--A.month_no,
A.GP_Borough_Name,
A.[PCN_NAME],
A.[PRACTICE_CODE],
A.[PRACTICE_NAME], A.Quintile, A.ageband, A.gender"
# send the query and get the data back
AE_admissions <- dbGetQuery(con,sql)
##### Create a couple of features
AE_admissions$deprived <- ifelse(AE_admissions$Quintile <2, 1,0)
AE_admissions$age_cat <- factor(AE_admissions$ageband)
AE_admissions$GP_Borough_Name <- factor(AE_admissions$GP_Borough_Name)
# subset to just the most recent month
# sub <-
# AE_balanced_scorecard_mn %>%
# filter(month == max(AE_balanced_scorecard_mn$month))
# Build a negative binomial regression model (like a Poisson regression, but deals with overdispersion better)
# The dataset is aggregated, not patient-level, so need to weight each row according to the number of
# patients it refers to, this is what the 'offset' does. Poisson / binomial / negative binomial
# all use a 'log' link function, so it's common to log the offset for scaling purposes.
admits_model <- glm.nb(IP_FROM_AE ~ age_cat + gender
+ deprived + offset(log(PERSONS))
, data=AE_admissions, na.action = na.omit)
# Extract the coefficient. The tidy function from broom package is helpful, as it exponentiates (converts the
# coefficient to an incidence rate ratio by reversing the link function), and calculates a confidence interval.
# You want the estimate and conf.low & conf.high columns
tidy(admits_model, conf.int = TRUE, conf.level = 0.95, exponentiate = TRUE) %>%
filter(term == "deprived")