-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathTrain_cifar_CNLL.py
598 lines (481 loc) · 23 KB
/
Train_cifar_CNLL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import random
import os
import argparse
import numpy as np
from PreResNet_multitask import *
from dataloader_separation import *
from math import log2
from Contrastive_loss import *
import collections.abc
from collections.abc import MutableMapping
## For plotting the logs
import wandb
wandb.init(project="continual-noisy-label-project", entity="ryota170") ## Change the entity here (your 'Weights and Biases' username)
## Arguments
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
parser.add_argument('--batch_size', default=64, type=int, help='train batchsize')
parser.add_argument('--warm_up', default=5, type=int, help='warmup epochs')
parser.add_argument('--lr', '--learning_rate', default=0.0005, type=float, help='initial learning rate') ### Learning Rate Should not be more than 0.001
parser.add_argument('--noise_mode', default='sym')
parser.add_argument('--alpha', default=4, type=float, help='parameter for Beta')
parser.add_argument('--lambda_u', default=30, type=float, help='weight for unsupervised loss')
parser.add_argument('--lambda_c', default=0.025, type=float, help='weight for contrastive loss')
parser.add_argument('--T', default=0.5, type=float, help='sharpening temperature')
parser.add_argument('--p_threshold', default=0.5, type=float, help='clean probability threshold')
parser.add_argument('--warmup_epochs', default=5, type=int)
parser.add_argument('--finetune_epochs', default=10, type=int)
parser.add_argument('--task_set', default='vehicles10-large_animals10-reset80', choices=['vehicles10-manmade_objects15-reset75', 'vehicles10-manmade_objects10-reset80', 'vehicles10-large_animals10-reset80'])
parser.add_argument('--task_mode', default="task_0", type=str, help="Which task we are executing")
parser.add_argument('--r', default=0.2, type=float, help='noise ratio')
parser.add_argument('--tau', default=5, type=float, help='filtering coefficient')
parser.add_argument('--metric', type=str, default = 'JSD', help='Comparison Metric')
parser.add_argument('--seed', default=123)
parser.add_argument('--gpuid', default=1, type=int)
parser.add_argument('--resume', default=False, type=bool, help = 'Resume from the warmup checkpoint')
parser.add_argument('--num_class', default=10, type=int)
parser.add_argument('--data_path', default='./data/CIFAR10', type=str, help='path to dataset')
parser.add_argument('--dataset', default='cifar10', type=str)
args = parser.parse_args()
## Weigths and Biases Configuration
wandb.config = {
"Learning Rate": args.lr,
"warmup_epochs": args.warmup_epochs,
"finetune_epochs": args.finetune_epochs,
"Batch Size": args.batch_size,
"Dataset": args.dataset,
"Noise Mode": args.noise_mode,
"Noise Rate": args.r,
"Loss Metric": args.metric
}
## GPU Setup
torch.cuda.set_device(args.gpuid)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
## Download the Datasets ##
if args.dataset== 'cifar10':
torchvision.datasets.CIFAR10(args.data_path,train=True, download=True)
torchvision.datasets.CIFAR10(args.data_path,train=False, download=True)
else:
torchvision.datasets.CIFAR100(args.data_path,train=True, download=True)
torchvision.datasets.CIFAR100(args.data_path,train=False, download=True)
## Checkpoint Location ##
folder = args.dataset + '_' + args.noise_mode + '_' + str(args.metric) + '_' + str(args.r)
model_save_loc1 = './checkpoint/' + folder
if not os.path.exists(model_save_loc1):
os.mkdir(model_save_loc1)
## Log files ##
stats_log=open(model_save_loc1 +'/%s_%.1f_%s'%(args.dataset,args.r,args.noise_mode)+'_stats.txt','w')
test_log=open(model_save_loc1 +'/%s_%.1f_%s'%(args.dataset,args.r,args.noise_mode)+'_acc.txt','w')
test_loss_log = open(model_save_loc1 +'/test_loss.txt','w')
## SSL-Training ##
def train(epoch, net, optimizer, labeled_trainloader, unlabeled_trainloader):
# net2.eval() # Freeze one network and train the other
net.train()
unlabeled_train_iter = iter(unlabeled_trainloader)
num_iter = (len(labeled_trainloader.dataset)//args.batch_size)+1
## Loss Statistics
loss_x = 0
loss_u = 0
loss_scl = 0
loss_ucl = 0
for batch_idx, (inputs_x, inputs_x2, inputs_x3, inputs_x4, labels_x, w_x) in enumerate(labeled_trainloader):
try:
inputs_u, inputs_u2, inputs_u3, inputs_u4 = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
inputs_u, inputs_u2, inputs_u3, inputs_u4 = unlabeled_train_iter.next()
batch_size = inputs_x.size(0)
# Transform Label to One-hot
labels_x = torch.zeros(batch_size, task_classes).scatter_(1, labels_x.view(-1,1), 1)
w_x = w_x.view(-1,1).type(torch.FloatTensor)
inputs_x, inputs_x2, inputs_x3, inputs_x4, labels_x, w_x = inputs_x.cuda(), inputs_x2.cuda(), inputs_x3.cuda(), inputs_x4.cuda(), labels_x.cuda(), w_x.cuda()
inputs_u, inputs_u2, inputs_u3, inputs_u4 = inputs_u.cuda(), inputs_u2.cuda(), inputs_u3.cuda(), inputs_u4.cuda()
with torch.no_grad():
# Label Co-guessing of Unlabeled Samples
outputs_u11 = net(inputs_u)[1]
outputs_u12 = net(inputs_u2)[1]
## Pseudo-Label
pu = (torch.softmax(outputs_u11, dim=1) + torch.softmax(outputs_u12, dim=1))/2
ptu = pu**(1/args.T) ## Temparature Sharpening
targets_u = ptu / ptu.sum(dim=1, keepdim=True)
targets_u = targets_u.detach()
## Label Refinement
outputs_x = net(inputs_x)[1]
outputs_x2 = net(inputs_x2)[1]
px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
px = w_x*labels_x + (1-w_x)*px
ptx = px**(1/args.T) # Temparature sharpening
targets_x = ptx / ptx.sum(dim=1, keepdim=True)
targets_x = targets_x.detach()
# MixMatch
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1-l)
all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u3, inputs_u4], dim=0)
all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
## Mixup
mixed_input = l * input_a + (1 - l) * input_b
mixed_target = l * target_a + (1 - l) * target_b
_ , logits1, logits = net(mixed_input)
logits_x = logits1[:batch_size*2]
logits_x1 = logits[:batch_size*2]
logits_u = logits[batch_size*2:]
## Combined Loss
Lx, Lu, Ldiv, lamb = criterion(logits_x, logits_x1, mixed_target[:batch_size*2], logits_u, mixed_target[batch_size*2:], epoch+batch_idx/num_iter, warm_up)
# Regularization
prior = torch.ones(task_classes)/task_classes
prior = prior.cuda()
pred_mean = torch.softmax(logits, dim=1).mean(0)
penalty = torch.sum(prior*torch.log(prior/pred_mean))
## Total Loss
loss = Lx + 0.1*lamb * Lu + penalty
## Accumulate Loss
loss_x += Lx.item()
loss_u += Lu.item()
loss_ucl += Ldiv.item()
# Compute Gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write('\r')
sys.stdout.write('%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t Labeled loss: %.2f Unlabeled loss: %.2f Contrastive Loss:%.4f'
%(args.dataset, args.r, args.noise_mode, epoch, args.finetune_epochs, batch_idx+1, num_iter, loss_x/(batch_idx+1), loss_u/(batch_idx+1), loss_ucl/(batch_idx+1)))
sys.stdout.flush()
wandb.log({"Total Loss": 0,
"Labeled Loss": loss_x/(batch_idx+1),
"KL Div. Loss": loss_ucl/(batch_idx+1),
"Unlabeled Loss": loss_u/(batch_idx+1)})
## For Standard Training
def warmup_standard(epoch,net,optimizer,dataloader):
net.train()
num_iter = (len(dataloader.dataset)//dataloader.batch_size)+1
total = 0
correct = 0
for batch_idx, (inputs, labels, path) in enumerate(dataloader):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
_,outputs, _ = net(inputs)
loss = CEloss(outputs, labels)
_, predicted = torch.max(outputs, 1)
## Penalize confident prediction for asymmetric noise
if args.noise_mode=='asym':
penalty = conf_penalty(outputs)
if torch.isnan(penalty):
L = loss
else:
L = loss + penalty
else:
L = loss
L.backward()
optimizer.step()
total += labels.size(0)
correct += predicted.eq(labels).cpu().sum().item()
# sys.stdout.write('\r')
# sys.stdout.write('%s:%.1f-%s | Epoch [%3d/%3d] Iter[%3d/%3d]\t CE-loss: %.4f'
# %(args.dataset, args.r, args.noise_mode, epoch, args.warmup_epochs, batch_idx+1, num_iter, loss.item()))
# sys.stdout.flush()
acc = 100.*correct/total
# print("\n| Train Epoch #%d\t Accuracy: %.2f%%\n" %(epoch, acc))
## For Standard Training
def warmup_val(epoch,net,optimizer,dataloader):
net.train()
num_iter = (len(dataloader.dataset)//dataloader.batch_size)+1
total = 0
correct = 0
for batch_idx, (inputs, labels, path) in enumerate(dataloader):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
_, outputs, _ = net(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += predicted.eq(labels).cpu().sum().item()
acc = 100.*correct/total
print("\n| Train Epoch #%d\t Accuracy: %.2f%%\n" %(epoch, acc))
return acc
## Test Accuracy
def warmup_test(epoch,net1, class_name):
net1.eval()
num_samples = 1000
correct = 0
total = 0
loss_x = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
_, outputs1, outputs2 = net1(inputs)
# _, outputs2 = net2(inputs)
outputs = outputs1
_, predicted = torch.max(outputs, 1)
loss = CEloss(outputs, targets)
loss_x += loss.item()
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100.*correct/total
# print("\n| Test Epoch #%d\t Accuracy: %.2f%%\n" %(epoch,acc))
test_log.write(str(acc)+'\n')
test_log.flush()
test_loss_log.write(str(loss_x/(batch_idx+1))+'\n')
test_loss_log.flush()
return acc, loss_x/(batch_idx+1)
## Test Accuracy
def test(epoch,net1):
net1.eval()
# net2.eval()
correct = 0
total = 0
loss_x = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.cuda(), targets.cuda()
_, outputs1, outputs2 = net1(inputs)
# _, outputs2 = net2(inputs)
outputs = outputs1
_, predicted = torch.max(outputs, 1)
loss = CEloss(outputs, targets)
loss_x += loss.item()
total += targets.size(0)
correct += predicted.eq(targets).cpu().sum().item()
acc = 100.*correct/total
print("\n| Test Epoch #%d\t Accuracy (Whole Test Dataset): %.2f%%\n" %(epoch,acc))
test_log.write(str(acc)+'\n')
test_log.flush()
test_loss_log.write(str(loss_x/(batch_idx+1))+'\n')
test_loss_log.flush()
return acc, loss_x/(batch_idx+1)
## KL Divergence
def kl_divergence(p, q):
return (p * ((p+1e-10) / (q+1e-10)).log()).sum(dim=1)
## Jensen-Shannon Divergence
class Jensen_Shannon(nn.Module):
def __init__(self):
super(Jensen_Shannon,self).__init__()
pass
def forward(self,p,q):
m = (p+q)/2
return 0.5*kl_divergence(p, m) + 0.5*kl_divergence(q, m)
## Uniform Sample Selection JSD based
def sample_selection_JSD(epoch, model1, num_samples, class_name):
JS_dist = Jensen_Shannon()
JSD = torch.zeros(num_samples)
for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
inputs, targets = inputs.cuda(), targets.cuda()
batch_size = inputs.size()[0]
## Get outputs of both network
with torch.no_grad():
out1 = torch.nn.Softmax(dim=1).cuda()(model1(inputs)[1])
out2 = torch.nn.Softmax(dim=1).cuda()(model1(inputs)[2])
out = torch.zeros(out1.size()).cuda()
out[:, class_name] = out1[:, class_name]
_, ind = torch.max(out, 1)
out_final = torch.zeros(out1.size()).cuda()
for kk in range(out.size()[0]):
out_final[kk, ind[kk]] = 1
## make one hot prediction ##
# if out[kk,class_name[0]]> out[kk,class_name[1]]:
# out[kk,class_name[0]] = 1
# out[kk,class_name[1]] = 0
# else:
# out[kk,class_name[0]] = 0
# out[kk,class_name[1]] = 1
# print(ind[kk],out_final[kk,0:ind[kk]+1])
## Divergence clculator to record the diff. between ground truth and output prob. dist.
dist = JS_dist(out_final, F.one_hot(targets, num_classes = args.num_class))
JSD[int(batch_idx*batch_size):int((batch_idx+1)*batch_size)] = dist
return JSD
## Unsupervised Loss coefficient adjustment
def linear_rampup(current, warm_up, rampup_length=16):
current = np.clip((current-warm_up) / rampup_length, 0.0, 1.0)
return args.lambda_u*float(current)
class SemiLoss(object):
def __call__(self, outputs_x, outputs_x2, targets_x, outputs_u, targets_u, epoch, warm_up):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u)**2)
## Get the labeled and unlabeled probability distributions
labeled_distribution = F.softmax(outputs_x,dim=1)
unlabeled_distribution = F.log_softmax(outputs_x2,dim=1)
L_div = F.kl_div(unlabeled_distribution, labeled_distribution, reduction='batchmean')
return Lx, Lu, L_div, linear_rampup(epoch,warm_up)
class NegEntropy(object):
def __call__(self,outputs):
probs = torch.softmax(outputs, dim=1)
return torch.mean(torch.sum(probs.log()*probs, dim=1))
def create_model(num_class):
model = ResNet18(num_classes = num_class)
model = model.cuda()
return model
### Model Specifications and Loss Functions ###
print('| Building net')
task_classes = args.num_class
net1 = create_model(task_classes)
cudnn.benchmark = True
## Semi-Supervised Loss
criterion = SemiLoss()
contrastive_criterion = SupConLoss()
## Optimizer and Scheduler
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler1 = optim.lr_scheduler.CosineAnnealingLR(optimizer1, 240, 2e-4)
if args.noise_mode=='asym':
conf_penalty = NegEntropy()
## Warmup Period
if args.dataset =='cifar10':
warm_up = args.warm_up
elif args.dataset=='cifar100':
warm_up = args.warm_up
num_samples = 0
## Checkpoint Location
folder = args.dataset + '_' + str(args.noise_mode) + '_' + str(args.r)
model_save_loc = './checkpoint/' + folder
if not os.path.exists(model_save_loc):
os.mkdir(model_save_loc)
model_name_1 = 'Net1_' + str(args.task_mode) +'.pth'
if args.resume:
start_epoch = warm_up
net1.load_state_dict(torch.load(os.path.join(model_save_loc, model_name_1))['net'])
else:
start_epoch = 0
if args.dataset=='cifar10':
task_mode_list = ['task_0', 'task_1', 'task_2', 'task_3', 'task_4']
else:
task_mode_list = ['task_0', 'task_1', 'task_2', 'task_3', 'task_4', 'task_5', 'task_6', 'task_7', 'task_8', 'task_9', 'task_10', 'task_11', 'task_12', 'task_13', 'task_14', 'task_15', 'task_16', 'task_17', 'task_18', 'task_19']
task_mode_finetune = []
## Intitalize Replay Buffers
clean_rep_buffer = {"Images": [],
"Labels": []}
noisy_rep_buffer = {"Images": []}
N_1 = 25
N_2 = 50
for task_mode in task_mode_list:
if args.dataset=='cifar10':
label_file = args.data_path + '/cifar10_Train_labels_' + str(task_mode) + '_' + str(args.noise_mode) + '_' + str(args.r) + '.npy'
else:
label_file = args.data_path + '/cifar100_Train_labels_' + str(task_mode) + '_' + str(args.noise_mode) + '_' + str(args.r) + '.npy'
train_label = np.squeeze(np.load(label_file))
class_name = np.unique(train_label)
num_samples = np.shape(train_label)[0]
print("Number of Samples:", num_samples, class_name)
## Create Model
weight = torch.zeros(task_classes)
weight[class_name] = 1
weight = weight.cuda()
## Weighted Loss Functions
CEloss = nn.CrossEntropyLoss(weight = weight)
## Intialize Clean and Noisy Buffers
delay_buffer_size = 500
clean_buffer_size = 500
noisy_buffer_size = 1000
clean_buffer = None
noisy_buffer = None
clean_buffer = {"Images": [],
"Labels": []}
noisy_buffer = {"Images": []}
nb_iterations = int(num_samples/delay_buffer_size)
for iteration in range(nb_iterations):
best_acc = 0
## Call the Dataloader
from dataloader_separation import *
loader = cifar_dataloader(args.dataset, task_mode=task_mode, r=args.r, noise_mode=args.noise_mode, batch_size=args.batch_size, num_workers=4,\
root_dir=args.data_path, log=stats_log, noise_file='')
eval_loader = loader.run(0, [iteration, iteration+1], delay_buffer_size, 'eval_train')
warmup_dataset, warmup_trainloader = loader.run(0, [iteration, iteration+1], delay_buffer_size, 'warmup')
test_loader = loader.run(0, [iteration, iteration+1], delay_buffer_size, 'test', list(class_name))
## Warmup Training
for epoch in range(0,args.warmup_epochs):
## Warmup Stage
# warmup_trainloader = loader.run(0, delay_buffer_size, 'warmup')
print('Warmup Model')
warmup_standard(epoch, net1, optimizer1, warmup_trainloader)
acc, loss = warmup_test(epoch, net1, class_name)
scheduler1.step()
## Keep the log
wandb.log({"Validation Accuracy": acc,
"Validation Loss": loss})
wandb.watch(net1)
if acc > best_acc:
model_name_1 = 'Net1_' + str(args.task_mode) + '.pth'
print("Save the Model --- --")
checkpoint1 = {
'net': net1.state_dict(),
'Model_number': 1,
'Noise_Ratio': args.r,
'Loss Function': 'CE',
'Optimizer': 'SGD',
'Noise_mode': args.noise_mode,
'Accuracy': acc,
'Dataset': args.dataset,
'Batch Size': args.batch_size,
'epoch': epoch,
}
torch.save(checkpoint1, os.path.join(model_save_loc, model_name_1))
best_acc = acc
## Separate the Delay Buffer
JSD = sample_selection_JSD(0, net1, delay_buffer_size, class_name)
threshold = torch.mean(JSD)
SR = torch.sum(JSD<threshold).item()/delay_buffer_size
# print("Threshold:", threshold, SR)
JSD = JSD.cpu().numpy()
pred_idx = np.argsort(JSD)[0: int(SR*delay_buffer_size)]
pred_idx = [int(x) for x in list(pred_idx)]
idx = list(range(delay_buffer_size))
pred_idx_noisy = [x for x in idx if x not in pred_idx]
IND1 = [x for x in pred_idx_noisy if x in pred_idx]
clean_buffer["Images"].extend(warmup_dataset.train_data[pred_idx])
clean_buffer["Labels"].extend(warmup_dataset.noise_label[pred_idx])
noisy_buffer["Images"].extend(warmup_dataset.train_data[pred_idx_noisy])
## Replay Buffer
repl_idx = np.array(pred_idx)[:N_1]
repl_idx_noisy = np.array(pred_idx_noisy)[:N_2]
clean_rep_buffer["Images"].extend(warmup_dataset.train_data[repl_idx])
clean_rep_buffer["Labels"].extend(warmup_dataset.noise_label[repl_idx])
noisy_rep_buffer["Images"].extend(warmup_dataset.train_data[repl_idx_noisy])
# print(len(clean_buffer["Images"]))
## Fine-Tuning Stage
if len(clean_buffer["Images"]) >= 500:
X_images = clean_rep_buffer["Images"] + clean_buffer["Images"]
X_labels = clean_rep_buffer["Labels"] + clean_buffer["Labels"]
U_images = noisy_rep_buffer["Images"] + noisy_buffer["Images"]
### Main Training
from dataloader_finetune import *
CEloss = nn.CrossEntropyLoss()
loader = cifar_dataloader(args.dataset, task_mode=task_mode_list, r=args.r, noise_mode=args.noise_mode, batch_size=args.batch_size, num_workers=4,\
root_dir=args.data_path, log=stats_log, noise_file='')
labeled_trainloader, unlabeled_trainloader = loader.run(0.5, X_images, X_labels, U_images, 'train')
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr*50, momentum=0.9, weight_decay=5e-4)
scheduler1 = optim.lr_scheduler.CosineAnnealingLR(optimizer1, args.finetune_epochs, 2e-2)
best_acc_finetune = 0
for epoch in range(args.finetune_epochs):
train(epoch, net1, optimizer1, labeled_trainloader, unlabeled_trainloader) # train net1
test_loader = loader.run(0, X_images, X_labels, U_images, 'test')
acc, loss = test(epoch, net1)
if acc > best_acc_finetune:
model_name_1 = 'Net1_final.pth'
print("Save the Model --- --")
checkpoint1 = {
'net': net1.state_dict(),
'Model_number': 1,
'Noise_Ratio': args.r,
'Loss Function': '3 type',
'Optimizer': 'SGD',
'Noise_mode': args.noise_mode,
'Accuracy': acc,
'Dataset': args.dataset,
'Batch Size': args.batch_size,
'epoch': epoch,
}
torch.save(checkpoint1, os.path.join(model_save_loc, model_name_1))
best_acc_finetune = acc
### RE-INTIALIZE
clean_buffer = {"Images": [],
"Labels": []}
noisy_buffer = {"Images": []}