-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
43 lines (34 loc) · 1.12 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from linear_solver import pywraplp
def main(unused_argv):
# using GLPK
solver = pywraplp.Solver('CoinsGridGLPK',
pywraplp.Solver.GLPK_LINEAR_PROGRAMMING)
# Using CLP
# solver = pywraplp.Solver('CoinsGridCLP',
# pywraplp.Solver.CLP_LINEAR_PROGRAMMING)
n = 31 # the grid size
c = 14 # number of coins per row/column
x = {}
for i in range(n):
for j in range(n):
x[(i,j)] = solver.IntVar(0, 1, 'x[%i,%i]' % (i, j))
# sum rows/columns == c
for i in range(n):
solver.Add(solver.Sum(
[x[(i, j)] for j in range(n)]) == c) # sum rows
solver.Add(solver.Sum(
[x[(j, i)] for j in range(n)]) == c) # sum cols
# quadratic horizonal distance var
objective_var = solver.Sum(
[x[(i, j)] * (i - j) * (i - j)
for i in range(n) for j in range(n)])
objective = solver.Minimize(objective_var)
solver.Solve()
for i in range(n):
for j in range(n):
# int representation
print int(x[(i, j)].solution_value()),
print
print
if __name__ == '__main__':
main("coin grids")