-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathInterpolation.cpp
executable file
·93 lines (88 loc) · 2.4 KB
/
Interpolation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include "Interpolation.h"
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
double Interpolation::Spline(double x[], double y[], double a, int n){
int interval, i;
double h[n], alpha[n], l[n], u[n], z[n], c[n], b[n], d[n], interpolant,aj,bj,cj,dj;
//setting length of the intervals
for (i=0; i<n-1; i++){
h[i] = x[i+1]-x[i];
}
//
for (i=0; i<n-1; i++){
alpha[i] = ((3/h[i]) * (y[i+1] - y[i]) )- ( (3/h[i-1]) * (y[i] - y[i-1]) );
}
//Tridiagonal matrix formation
//z[0], z[n] = 0
l[0] = 1;
u[0] = 0;
z[0] = 0;
for (i = 1; i<n-1; i++){
l[i] = (2 * (x[i+1] - x[i-1])) - (h[i-1] * u[i-1]);
u[i] = h[i] / l[i];
z[i] = (alpha[i] - (h[i-1] * z[i-1]) ) / l[i]; //second derivative of f(x[i])
}
l[n] = 1;
z[n] = 0;
c[n] = 0;
for (i=n-1; i>=0; i--){
c[i] = z[i] - (u[i] * c[i+1]) ;
b[i] = ( (y[i+1] - y[i]) / (h[i]) ) - ((h[i]/3) * (c[i+1] + (2*c[i])));
d[i] = (c[i+1] - c[i]) / (3*h[i]);
}
sort(x,x+n);
if (a < x[0] || a > x[n-1]){
cout << "Not in range";
return 0;
}
else{
interval = findingInterval(x, a, n);
//calculated coefficients of Sj(x) = aj + bj(x-xj) + cj(x-xj)^2 + dj(x-xj) ^3
aj = y[interval];
bj = b[interval];
cj = c[interval];
dj = d[interval];
interpolant = aj + bj + pow( cj * (a - x[interval]) , 2) + pow( dj * (a - x[interval]) , 3);
//cout << "\naj = " << aj << "\nbj = " << bj << "\ncj = " << cj << "\ndj = " << dj << "\n" << "x[interval] = " << x[interval] << "\n " << "a: " << a << "\n";
return interpolant;
}
}
double Interpolation::findingInterval(double x[], double a, int n) {
for (int i = n-1; i > 0; i--){
if (a < x[i] && a > x[i-1]) {
return i-1;
}
}
return 0;
}
double Interpolation::NewtInt(double x[], double y[], double a, int n)
{
double fdd[n]; //initializng an array of Fdds
double sum,mult;
int i,j;
//initializing FDDs with Ys
for (i=0; i<n; i++){
fdd[i] = y[i];
}
//calculating FDDs for each iteration
for (j=0; j<n-1; j++){
for (i=n-1; i>j;i--){
fdd[i] = ( fdd[i]-fdd[i-1] )/ ( x[i]-x[i-j-1]) ;
}
}
//evaluating fn(x) while calculating coefficients
for(i=n-1;i>=0;i--)
{
mult = 1;
for(j=0;j<i;j++){
mult *= (a-x[j]);
}
mult *= fdd[i];
sum += mult;
cout << "Iteration " << (n-1)-i << ": " << sum << "\n";
}
return sum;
}