-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiff_augmentation.py
97 lines (78 loc) · 3.69 KB
/
diff_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import tensorflow as tf
class DiffAugmentLayer(tf.keras.layers.Layer):
def __init__(self, policy=["color", "translation", "cutout"], channels_first=False, **kwargs):
super(DiffAugmentLayer, self).__init__(**kwargs)
self.policy = policy
self.channels_first = channels_first
# def build(self, input_shape):
# self.built = True
# def compute_output_shape(self, input_shape):
# return input_shape
def call(self, inputs, training=None):
if training:
return DiffAugment(inputs, self.policy, self.channels_first)
return inputs
def DiffAugment(x, policy=["color", "translation", "cutout"], channels_first=False):
if policy:
if channels_first:
x = tf.transpose(x, [0, 2, 3, 1])
for p in policy:
for f in AUGMENT_FNS[p]:
x = f(x)
if channels_first:
x = tf.transpose(x, [0, 3, 1, 2])
return x
def rand_brightness(x):
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) - 0.5
x = x + magnitude
return x
def rand_saturation(x):
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) * 2
x_mean = tf.reduce_mean(x, axis=3, keepdims=True)
x = (x - x_mean) * magnitude + x_mean
return x
def rand_contrast(x):
magnitude = tf.random.uniform([tf.shape(x)[0], 1, 1, 1]) + 0.5
x_mean = tf.reduce_mean(x, axis=[1, 2, 3], keepdims=True)
x = (x - x_mean) * magnitude + x_mean
return x
def rand_translation(x, ratio=0.125):
batch_size = tf.shape(x)[0]
image_size = tf.shape(x)[1:3]
shift = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32)
translation_x = tf.random.uniform([batch_size, 1], -shift[0], shift[0] + 1, dtype=tf.int32)
translation_y = tf.random.uniform([batch_size, 1], -shift[1], shift[1] + 1, dtype=tf.int32)
grid_x = tf.clip_by_value(tf.expand_dims(tf.range(image_size[0], dtype=tf.int32), 0) + translation_x + 1, 0, image_size[0] + 1)
grid_y = tf.clip_by_value(tf.expand_dims(tf.range(image_size[1], dtype=tf.int32), 0) + translation_y + 1, 0, image_size[1] + 1)
x = tf.gather_nd(tf.pad(x, [[0, 0], [1, 1], [0, 0], [0, 0]]), tf.expand_dims(grid_x, -1), batch_dims=1)
x = tf.transpose(
tf.gather_nd(tf.pad(tf.transpose(x, [0, 2, 1, 3]), [[0, 0], [1, 1], [0, 0], [0, 0]]), tf.expand_dims(grid_y, -1), batch_dims=1),
[0, 2, 1, 3],
)
return x
def rand_cutout(x, ratio=0.5):
batch_size = tf.shape(x)[0]
image_size = tf.shape(x)[1:3]
cutout_size = tf.cast(tf.cast(image_size, tf.float32) * ratio + 0.5, tf.int32)
offset_x = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[0] + (1 - cutout_size[0] % 2), dtype=tf.int32)
offset_y = tf.random.uniform([tf.shape(x)[0], 1, 1], maxval=image_size[1] + (1 - cutout_size[1] % 2), dtype=tf.int32)
grid_batch, grid_x, grid_y = tf.meshgrid(
tf.range(batch_size, dtype=tf.int32),
tf.range(cutout_size[0], dtype=tf.int32),
tf.range(cutout_size[1], dtype=tf.int32),
indexing="ij",
)
cutout_grid = tf.stack([grid_batch, grid_x + offset_x - cutout_size[0] // 2, grid_y + offset_y - cutout_size[1] // 2], axis=-1)
mask_shape = tf.stack([batch_size, image_size[0], image_size[1]])
cutout_grid = tf.maximum(cutout_grid, 0)
cutout_grid = tf.minimum(cutout_grid, tf.reshape(mask_shape - 1, [1, 1, 1, 3]))
mask = tf.maximum(
1 - tf.scatter_nd(cutout_grid, tf.ones([batch_size, cutout_size[0], cutout_size[1]], dtype=tf.float32), mask_shape), 0
)
x = x * tf.expand_dims(mask, axis=3)
return x
AUGMENT_FNS = {
"color": [rand_brightness, rand_saturation, rand_contrast],
"translation": [rand_translation],
"cutout": [rand_cutout],
}