-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathCART.cpp
212 lines (211 loc) · 5.12 KB
/
CART.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/***
回归树 CART
考虑
1最小均方差 ,拟合函数采用均值函数, 拟合函数采用线性模型
2特征阈值的选择是从逐个样本中选择,不是按步长选择
2属性类型(string)连续值
3预剪枝,后剪枝
**/
#include "CART.h"
#define MAX 100000000
namespace MLL
{
CART::twoSubData CART::binSplitDataSet(const Data &data,const int &axis,const double &value)
{
twoSubData twosubdata;
for(size_t i = 0; i < data.size(); i++)
{
if(data[i][axis] <= value)
{
twosubdata.left.push_back(data[i]);
}
else
{
twosubdata.right.push_back(data[i]);
}
}
return twosubdata;
}
double CART::mean(const Data &data)
{
if(data.size()==0)
return 0;
double meanvalue = 0;
int label_index = data[0].size()-1;
for(size_t i = 0; i < data.size(); i++)
{
meanvalue += data[i][label_index];
}
meanvalue /= data.size();
return meanvalue;
}
double CART::MeanErr(const Data &data)
{
if(data.size() == 0)
return 0;
double meanvalue = mean(data);
double meanErr = 0;
int label_index = data[0].size()-1;
for(size_t i=0; i<data.size(); i++)
{
meanErr += (data[i][label_index] - meanvalue) * (data[i][label_index] - meanvalue);
}
meanErr = sqrt(meanErr / data.size());
return meanErr;
}
CART::split CART::chooseBestSplit(const Data &data,const double &minErr)
{
size_t i = 0, j = 0;
double oldMeanErr = MeanErr(data);
double bestMeanErr = MAX;
double newMeanErr = 0;
int signvalue = 1;
twoSubData twosubdata;
split sp;
int label_index = data[0].size() - 1;
double value = data[0][label_index];
for(i = 0; i < data.size(); i++)
{
if(data[i][label_index] != value)
{
signvalue = 0;
break;
}
}
if(signvalue)//所有数据值都一样则记为叶子节点不再分裂
{
std::cout<<"signvalue"<<std::endl;
sp.bestIndex = -1;
sp.value = mean(data);
return sp;
}
for(i = 0; i < data[0].size() - 1; i++)
{
for(j = 0; j < data.size(); j++)
{
twosubdata = binSplitDataSet(data,i,data[j][i]);
if(twosubdata.left.size() == 0 || twosubdata.right.size() == 0)
continue;
newMeanErr = MeanErr(twosubdata.left) + MeanErr(twosubdata.right);
if(newMeanErr < bestMeanErr)
{
sp.bestIndex = i;
sp.value = data[j][i];//j为样本数,i为特征数
bestMeanErr = newMeanErr;
}
}
}
if(oldMeanErr - bestMeanErr<minErr)
{
sp.bestIndex = -1;
sp.value = mean(data);
}
return sp;
}
int CART::createBinTree(bitree &t,Data &data)
{
if(data.size() == 0)
return 0;
if(!(t = (bitree)malloc(sizeof(bitnode)))) exit(-1);
split sp = chooseBestSplit(data,0.001);
t->feature = sp.bestIndex;
t->meanValue = sp.value;
//t->data = data;//为什么data不能赋值
if(t->feature == -1)
{
t->left = NULL;
t->right = NULL;
std::cout<< "feat-1" <<std::endl;
return 0;
}
//std::cout<<"feature="<<t->feature<<" value="<<t->meanValue<<std::endl;
twoSubData twosubdata = binSplitDataSet(data,sp.bestIndex,sp.value);
createBinTree((t->left), twosubdata.left);
createBinTree((t->right), twosubdata.right);
return 0;
}
int CART::preorder(bitree &t)//递归先序遍历二叉树
{
if(t!=NULL)
{
if(t->feature==-1)
std::cout<<t->feature<<" "<<t->meanValue<<" "<<std::endl;//<<t->data.size()<<std::endl;//只输出叶子节点
if(t->left!=NULL)
preorder(t->left);
if(t->right!=NULL)
preorder(t->right);
}
return 0;
}
int CART::prune(bitree &t,const Data &testData)
{
if(t == NULL || testData.size() == 0)//检测子树是否为NULL,不然后面的操作执行不了
return 0;
if(t->left->feature != -1 || t->right->feature != -1)
{
twoSubData twosubdata = binSplitDataSet(testData,t->feature,t->meanValue);
if(t->left->feature != -1)
{
prune(t->left, twosubdata.left);
}
if(t->right->feature != -1)
{
prune(t->right, twosubdata.right);
}
if(t->right->feature == -1 && t->left->feature == -1)
{
prune(t,testData);
}
}
else
{
twoSubData twosubdata = binSplitDataSet(testData, t->feature, t->meanValue);
double errortwo = MeanErr(twosubdata.left) + MeanErr(twosubdata.right);
double errorone = MeanErr(testData);
if(errorone < errortwo)
{
std::cout<<"prune merge"<<std::endl;
t->left = NULL;
t->right = NULL;
t->feature = -1;
t->meanValue = mean(testData);
}
return 0;
}
return 0;
}
double CART::predict(bitree t, const RowData &data)//bitree &t,不能引用,不能改变树根
{
while(t)
{
if(t->feature == -1)
return t->meanValue;
else
{
if(data[t->feature] <= t->meanValue)
t = t->left;
else
t = t->right;
}
}
return 0;
}
CART::CART(const std::string &file)
{
Data data;
LoadData(data,file);
bitree t;
createBinTree(t,data);
preorder(t);
Data testdata;
LoadData(testdata,"data/carttest.txt");
prune(t,testdata);
preorder(t);
std::vector<double> labels(testdata.size(),0);
for(size_t i = 0; i < testdata.size(); i++)
{
labels[i] = predict(t,testdata[i]);
std::cout<< labels[i] << "\t" << testdata[i][testdata[0].size()-1] << std::endl;
}
}
}