-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocaldet_TUD_das.cfg
66 lines (60 loc) · 2.02 KB
/
localdet_TUD_das.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
[GLOBAL]
nn_threads = 4
det_threads = 4
rank_threads= 8
mode = detection
setmode = becker
train_sel = segment
local = False
tmp_dir = /local/vdvelden/det20_TUD_dsift_sl4_nonlocal_tmp_5
res_dir = /local/vdvelden/det20_TUD_dsift_sl4_nonlocal_res_5
train_set = tudtrain5
test_set = tudtest
[VOC]
imset_path = VOCdevkit/VOC2007/ImageSets/Main/%s.txt
image_path = VOCdevkit/VOC2007/JPEGImages/%s.jpg
annotation_path = VOCdevkit/VOC2007/Annotations/%s.xml
gt_object_path = VOCdevkit/VOC2007/SegmentationObject/%s.png
gt_class_path = VOCdevkit/VOC2007/SegmentationClass/%s.png
classes = motorbike
background
[TRAIN-DESCRIPTOR]
dtype = DescriptorUint8
cache_dir = descriptors
detector = densesampling
descriptor = sift
outputFormat = binary
ds_spacing = 8
ds_scales = 2.67+4.0+5.33
[TEST-DESCRIPTOR]
dtype = DescriptorUint8
cache_dir = descriptors
detector = densesampling
descriptor = sift
outputFormat = binary
ds_spacing = 8
ds_scales = 2.67+4.0+5.33
[NBNN]
behmo = False
checks = 1000
[TEST]
k = 20
batch_size = 100
img_pickle_path = batches/%s.pkl
[DETECTION]
method = single_link
dist = overlap
hyp_threshold = nearest
ignore_threshold = False
hypothesis_metric = bb_exemp_qh
all_det_metrics = det_random,hyp_det_random,det_qd_exempfg,hyp_det_qd_exempfg,det_becker,det_qd,det_energy,det_wenergy,det_full_qh,det_exemp_qh,det_full_fg,det_full_bg,det_exemp_mean_fg,det_exemp_sum_fg,det_exemp_bg,qs_density,hyp_det_energy,hyp_det_wenergy,hyp_det_full_qh,hyp_det_exemp_qh,hyp_det_full_fg,hyp_det_full_bg,hyp_det_exemp_mean_fg,hyp_det_exemp_sum_fg,hyp_det_exemp_bg
detection_metric = det_becker
ranking_path = %s/comp3_det_%s_%s.txt
distances_path = distances/%s_%s.pkl
knn_path = knn/%s_%s.pkl
hypotheses_path = hypotheses/%s_%s.pkl
exemplar_path = exemplars/%s.npy
quickshift_tree_path = quickshift/%s_%s.pkl
tau = 1.20
theta_m = 0.8
theta_p = 0.4