-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyse_quickshift_trees.py
67 lines (62 loc) · 1.84 KB
/
analyse_quickshift_trees.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import os
import Image
import matplotlib.pyplot as plt
import cPickle
import copy
if __name__ == '__main__':
files = os.listdir('quickshift')
parentses = []
distses = []
sortdistses = []
idxes = []
for file in files:
with open('quickshift/'+file, 'rb') as f:
p = cPickle.load(f)
d = cPickle.load(f)
parentses.append(p)
distses.append(d)
idxes.append(range(p.shape[0]))
sortdistses.append(np.sort(d))
# for dists in sortdistses:
# plt.plot(dists)
# plt.show()
infs = []
for d in distses:
infs.append(np.isinf(d).sum())
print np.sort(d)[-10:]
selfparents = []
for p, i in zip(parentses, idxes):
selfparents.append(np.sum(p==i))
# print infs
# print p
taus = [0,1,1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,1.09,1.1,1.2,1.25,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.5,3,3.5,4,4.5,5]
ax = plt.subplot(1,1,1)
lalala = []
for n, dists in enumerate(distses):
no_clusters = []
for tau in taus:
clusters = copy.copy(parentses[n])
for i, d in enumerate(dists):
if d <= tau:
dd = d
p = clusters[i]
while dd <= tau:
p = clusters[p]
dd = dists[p]
clusters[i] = p
n_c = np.unique(clusters).shape[0]
no_clusters.append(n_c)
print n
no_clusters.append(selfparents[n])
lalala.append(no_clusters)
# ax.plot(taus+[6], no_clusters)
# ax.set_yscale('log')
# plt.show()
print taus[13]
t125 = [n[13] for n in lalala]
print t125
print 'mean', np.mean(t125)
print 'median', np.median(t125)
print 'min', np.min(t125)
print 'max', np.max(t125)