-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasking.py
631 lines (528 loc) · 26.1 KB
/
masking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import math
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import copy
from utils import CosineDecay
class Masking:
def __init__(self, net=None, density=None, sparse_init=None, death_mode=None, death_rate=None, growth_mode=None,
update_frequency=None, optimizer=None, train_loader=None, epochs=None, device=None):
self.density = density
self.sparse_init = sparse_init
self.death_mode = death_mode
self.death_rate = death_rate
self.growth_mode = growth_mode
self.update_frequency = update_frequency
self.optimizer = optimizer
self.train_loader = train_loader
self.epochs = epochs
self.device = device
self.masks = {}
self.modules = [net]
self.names = []
# stats
self.name2zeros = {}
self.num_remove = {}
self.name2nonzeros = {}
self.steps = 0
#GMP
if self.sparse_init == 'gmp':
self.death_start = epochs/2
self.death_end = epochs - (epochs/10)
#DST
if self.update_frequency is not None:
self.death_rate_decay = self._drate_scheduler()
self._init()
def step(self,epoch):
self._apply_mask()
if self.sparse_init == 'gmp':
self._truncate_weights_GMP(epoch)
elif self.update_frequency is not None:
self.death_rate_decay.step()
self.death_rate = self.death_rate_decay.get_dr()
self.steps += 1
if self.steps % self.update_frequency == 0:
self._truncate_weights_DST()
_, _ = self.fired_masks_update()
def _init(self):
for module in self.modules:
for name, tensor in module.named_parameters():
self.names.append(name)
self.masks[name] = torch.zeros_like(tensor, dtype=torch.float32, requires_grad=False).to(self.device)
self._discard_weight_partial_name('bias')
self._discard_type(nn.BatchNorm2d)
self._discard_type(nn.BatchNorm1d)
if self.sparse_init == 'uniform':
self._uniform()
elif self.sparse_init == 'erk':
self._erk()
elif self.sparse_init == 'snip':
self._snip()
elif self.sparse_init == 'grasp':
self._grasp()
elif self.sparse_init == 'uniform_plus':
self._uniform_plus()
elif self.sparse_init == 'erk_plus':
self._erk_plus()
elif self.sparse_init == 'gmp':
self._gmp()
elif self.sparse_init == 'global_magnitude':
self._global_magnitude()
self._apply_mask()
self.fired_masks = copy.deepcopy(self.masks)
def _truncate_weights_DST(self):
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
mask = self.masks[name]
self.name2nonzeros[name] = mask.sum().item()
self.name2zeros[name] = mask.numel() - self.name2nonzeros[name]
# death
if self.death_mode == 'magnitude':
new_mask = self._magnitude_death(mask, weight, name)
elif self.death_mode == 'set':
new_mask = self._magnitude_and_negativity_death(mask, weight, name)
elif self.death_mode == 'taylor_fo':
new_mask = self._taylor_FO(mask, weight, name)
elif self.death_mode == 'mest':
new_mask = self._mest_death(mask, weight, name)
elif self.death_mode == 'sensitivity':
new_mask = self._sensitivity_death(mask, weight, name)
elif self.death_mode == 'r_sensitivity':
new_mask = self._reciprocal_sensitivity_death(mask, weight, name)
elif self.death_mode == 'snip':
new_mask = self._snip_death(mask, weight, name)
self.num_remove[name] = int(self.name2nonzeros[name] - new_mask.sum().item())
self.masks[name][:] = new_mask
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
new_mask = self.masks[name].data.byte()
# growth
if self.growth_mode == 'random':
new_mask = self._random_growth(name, new_mask, weight)
if self.growth_mode == 'unfired':
new_mask = self._unfired_growth(name, new_mask, weight)
elif self.growth_mode == 'gradient':
new_mask = self._gradient_growth(name, new_mask, weight)
elif self.growth_mode == 'momentum':
new_mask = self._momentum_growth(name, new_mask, weight)
# exchanging masks
self.masks.pop(name)
self.masks[name] = new_mask.float()
self._apply_mask()
def _truncate_weights_GMP(self, epoch):
death_rate = 1 - self.density
death_interval = self.death_end - self.death_start + 1
if epoch >= self.init_death_epoch and epoch <= self.death_end:
death_decay = (1 - ((epoch - self.death_start) / death_interval)) ** 3
curr_death_rate = death_rate - (death_rate * death_decay)
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
score = torch.abs(weight.data)
x, idx = torch.sort(score.view(-1))
p = int(curr_death_rate * weight.numel())
self.masks[name].data.view(-1)[idx[:p]] = 0.0
self._apply_mask()
# for sanity check can be removed
total_size = 0
for name, weight in self.masks.items():
total_size += weight.numel()
sparse_size = 0
for name, weight in self.masks.items():
sparse_size += (weight != 0).sum().int().item()
print('Total parameters under sparsity level of {0}: {1} after epoch of {2}'.format(self.density,
sparse_size / total_size,
epoch))
'''
DEATH
'''
def _threshold_death(self, mask, weight, name):
return (torch.abs(weight.data) > self.threshold)
def _magnitude_death(self, mask, weight, name):
num_remove = math.ceil(self.death_rate * self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
k = math.ceil(num_zeros + num_remove)
if num_remove == 0.0: return weight.data != 0.0
score = torch.abs(weight.data)
x, idx = torch.sort(score.view(-1))
mask.data.view(-1)[idx[:k]] = 0.0
return mask
def _taylor_FO(self, mask, weight, name):
num_remove = math.ceil(self.death_rate * self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
k = math.ceil(num_zeros + num_remove)
score = (weight.data * weight.grad).pow(2)
x, idx = torch.sort(score.flatten())
mask.data.view(-1)[idx[:k]] = 0.0
return mask
def _mest_death(self, mask, weight, name, gamma=1.0):
num_remove = math.ceil(self.death_rate * self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
k = math.ceil(num_zeros + num_remove)
score = abs(weight.data) + gamma * abs(weight.grad)
x, idx = torch.sort(score.flatten())
mask.data.view(-1)[idx[:k]] = 0.0
return mask
def _sensitivity_death(self, mask, weight, name, epsilon=1e-8):
num_remove = math.ceil(self.death_rate * self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
k = math.ceil(num_zeros + num_remove)
score = (abs(weight.grad) / (abs(weight.data) + epsilon)) + 1
x, idx = torch.sort(score.flatten())
mask.data.view(-1)[idx[:k]] = 0.0
return mask
def _reciprocal_sensitivity_death(self, mask, weight, name, epsilon=1e-8):
num_remove = math.ceil(self.death_rate * self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
k = math.ceil(num_zeros + num_remove)
score = (abs(weight.data) / (abs(weight.grad) + epsilon)) + 1
x, idx = torch.sort(score.flatten())
mask.data.view(-1)[idx[:k]] = 0.0
return mask
def _magnitude_and_negativity_death(self, mask, weight, name):
num_remove = math.ceil(self.death_rate * self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
score = weight[weight > 0.0].data
x, idx = torch.sort(score.view(-1))
k = math.ceil(num_remove / 2.0)
if k >= x.shape[0]: k = x.shape[0]
threshold_magnitude = x[k - 1].item()
score = weight[weight < 0.0].data
x, idx = torch.sort(score.view(-1))
threshold_negativity = x[k - 1].item()
pos_mask = (weight.data > threshold_magnitude) & (weight.data > 0.0)
neg_mask = (weight.data < threshold_negativity) & (weight.data < 0.0)
new_mask = pos_mask | neg_mask
return new_mask
def _snip_death(self, mask, weight, name):
num_remove = math.ceil(self.death_rate * self.name2nonzeros[name])
num_zeros = self.name2zeros[name]
k = math.ceil(num_zeros + num_remove)
score = abs(weight.data * weight.grad)
x, idx = torch.sort(score.flatten())
mask.data.view(-1)[idx[:k]] = 0.0
return mask
'''
GROWTH
'''
def _random_growth(self, name, new_mask, weight):
total_regrowth = self.num_remove[name]
n = (new_mask == 0).sum().item()
if n == 0: return new_mask
expeced_growth_probability = (total_regrowth / n)
new_weights = torch.rand(new_mask.shape).to(self.device) < expeced_growth_probability
new_mask_ = new_mask.byte() | new_weights
if (new_mask_ != 0).sum().item() == 0:
new_mask_ = new_mask
return new_mask_
def _unfired_growth(self, name, new_mask, weight):
total_regrowth = self.num_remove[name]
n = (new_mask == 0).sum().item()
if n == 0: return new_mask
num_nonfired_weights = (self.fired_masks[name] == 0).sum().item()
if total_regrowth <= num_nonfired_weights:
idx = (self.fired_masks[name].flatten() == 0).nonzero()
indices = torch.randperm(len(idx))[:total_regrowth]
# idx = torch.nonzero(self.fired_masks[name].flatten())
new_mask.data.view(-1)[idx[indices]] = 1.0
else:
new_mask[self.fired_masks[name] == 0] = 1.0
n = (new_mask == 0).sum().item()
expeced_growth_probability = ((total_regrowth - num_nonfired_weights) / n)
new_weights = torch.rand(new_mask.shape).to(self.device) < expeced_growth_probability
new_mask = new_mask.byte() | new_weights
return new_mask
def _gradient_growth(self, name, new_mask, weight):
total_regrowth = self.num_remove[name]
grad = self._get_gradient_for_weights(weight)
grad = grad * (new_mask == 0).float()
y, idx = torch.sort(torch.abs(grad).flatten(), descending=True)
new_mask.data.view(-1)[idx[:total_regrowth]] = 1.0
return new_mask
def _momentum_growth(self, name, new_mask, weight):
total_regrowth = self.num_remove[name]
grad = self._get_momentum_for_weights(weight)
grad = grad * (new_mask == 0).float()
y, idx = torch.sort(torch.abs(grad).flatten(), descending=True)
new_mask.data.view(-1)[idx[:total_regrowth]] = 1.0
return new_mask
'''
INIT
'''
def _gmp(self):
#print('initialize by gmp')
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.masks[name] = torch.ones_like(weight, dtype=torch.float32, requires_grad=False).to(self.device)
def _erk(self):
#print('initialize by erk')
erk_power_scale=1.0
is_epsilon_valid = False
dense_layers = set()
while not is_epsilon_valid:
divisor = 0
rhs = 0
raw_probabilities = {}
for name, mask in self.masks.items():
n_param = np.prod(mask.shape)
n_zeros = n_param * (1 - self.density)
n_ones = n_param * self.density
if name in dense_layers:
rhs -= n_zeros
else:
rhs += n_ones
raw_probabilities[name] = (np.sum(mask.shape) / np.prod(mask.shape)) ** erk_power_scale
divisor += raw_probabilities[name] * n_param
epsilon = rhs / divisor
max_prob = np.max(list(raw_probabilities.values()))
max_prob_one = max_prob * epsilon
if max_prob_one > 1:
is_epsilon_valid = False
for mask_name, mask_raw_prob in raw_probabilities.items():
if mask_raw_prob == max_prob:
#print(f"Sparsity of var:{mask_name} had to be set to 0.")
dense_layers.add(mask_name)
else:
is_epsilon_valid = True
density_dict = {}
# With the valid epsilon, we can set sparsities of the remaning layers.
for name, mask in self.masks.items():
n_param = np.prod(mask.shape)
if name in dense_layers:
density_dict[name] = 1.0
else:
probability_one = epsilon * raw_probabilities[name]
density_dict[name] = probability_one
self.masks[name][:] = (torch.rand(mask.shape) < density_dict[name]).float().data.to(self.device)
def _uniform(self):
#print('initialize by uniform')
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.masks[name][:] = (torch.rand(weight.shape) < self.density).float().data.to(self.device) # lsw
def _snip(self):
#print('initialize by snip')
# Grab a single batch from the training dataset
inputs, targets = next(iter(self.train_loader))
inputs = inputs.to(self.device)
targets = targets.to(self.device)
inputs.requires_grad = True
# Let's create a fresh copy of the network so that we're not worried about
# affecting the actual training-phase
for module in self.modules:
#net = copy.deepcopy(module).to(self.device)
module.to(self.device)
# Compute gradients (but don't apply them)
module.zero_grad()
outputs = module(inputs)
loss = F.cross_entropy(outputs, targets)
loss.backward()
grads_abs = []
for name, weight in module.named_parameters():
if name not in self.masks: continue
grads_abs.append(torch.abs(weight.grad))
# Gather all scores in a single vector and normalise
all_scores = torch.cat([torch.flatten(x) for x in grads_abs])
#norm_factor = torch.sum(all_scores)
#all_scores.div_(norm_factor)
num_params_to_keep = int(len(all_scores) * self.density)
threshold, _ = torch.topk(all_scores, num_params_to_keep, sorted=True)
acceptable_score = threshold[-1]
snip_masks = []
for g in grads_abs:
snip_masks.append(((g) >= acceptable_score).float())
#print(torch.sum(torch.cat([torch.flatten(x == 1) for x in snip_masks])))
module.zero_grad()
# re-sample mask positions
for snip_mask, name in zip(snip_masks, self.masks):
assert (snip_mask.shape == self.masks[name].shape)
self.masks[name][:] = snip_mask
#self.masks[name][:] = (torch.rand(self.masks[name].shape) < self.density).float().data.to(self.device)
def _uniform_plus(self):
#print('initialize by uniform+')
total_params = 0
for name, weight in self.masks.items():
total_params += weight.numel()
total_sparse_params = total_params * self.density
# remove the first layer
total_sparse_params = total_sparse_params - self.masks['conv.weight'].numel()
self.masks.pop('conv.weight')
if self.density < 0.2:
total_sparse_params = total_sparse_params - self.masks['fc.weight'].numel() * 0.2
self.density = float(total_sparse_params / total_params)
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
if name != 'fc.weight':
self.masks[name][:] = (torch.rand(weight.shape) < self.density).float().data.cuda()
else:
self.masks[name][:] = (torch.rand(weight.shape) < 0.2).float().data.cuda()
else:
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.masks[name][:] = (torch.rand(weight.shape) < self.density).float().data.cuda()
def _erk_plus(self):
#print('initialize by ERK_plus')
erk_power_scale = 1.0
total_params = 0
self.baseline_nonzero = 0
for name, weight in self.masks.items():
total_params += weight.numel()
self.baseline_nonzero += weight.numel() * density
for name in self.masks.copy():
if 'fc.weight' in name:
total_params = total_params - self.masks[name].numel()
density = (self.baseline_nonzero - self.masks[name].numel() * self.fc_density) / total_params
self.masks.pop(name)
is_epsilon_valid = False
dense_layers = set()
while not is_epsilon_valid:
divisor = 0
rhs = 0
raw_probabilities = {}
for name, mask in self.masks.items():
n_param = np.prod(mask.shape)
n_zeros = n_param * (1 - density)
n_ones = n_param * density
if name in dense_layers:
# See `- default_sparsity * (N_3 + N_4)` part of the equation above.
rhs -= n_zeros
else:
# Corresponds to `(1 - default_sparsity) * (N_1 + N_2)` part of the
# equation above.
rhs += n_ones
# Erdos-Renyi probability: epsilon * (n_in + n_out / n_in * n_out).
if len(mask.shape) !=2 :
raw_probabilities[name] = (
np.sum(mask.shape) / np.prod(mask.shape)
) ** erk_power_scale
else:
raw_probabilities[name] = (
np.sum(mask.shape) / np.prod(mask.shape)
) ** erk_power_scale
# Note that raw_probabilities[mask] * n_param gives the individual
# elements of the divisor.
divisor += raw_probabilities[name] * n_param
# By multipliying individual probabilites with epsilon, we should get the
# number of parameters per layer correctly.
epsilon = rhs / divisor
# If epsilon * raw_probabilities[mask.name] > 1. We set the sparsities of that
# mask to 0., so they become part of dense_layers sets.
max_prob = np.max(list(raw_probabilities.values()))
max_prob_one = max_prob * epsilon
if max_prob_one > 1:
is_epsilon_valid = False
for mask_name, mask_raw_prob in raw_probabilities.items():
if mask_raw_prob == max_prob:
#print(f"Sparsity of var:{mask_name} had to be set to 0.") # can be removed
dense_layers.add(mask_name)
else:
is_epsilon_valid = True
density_dict = {}
total_nonzero = 0.0
# With the valid epsilon, we can set sparsities of the remaning layers.
for name, mask in self.masks.items():
n_param = np.prod(mask.shape)
if name in dense_layers:
density_dict[name] = 1.0
else:
probability_one = epsilon * raw_probabilities[name]
density_dict[name] = probability_one
#print(f"layer: {name}, shape: {mask.shape}, density: {density_dict[name]}") # can be removed
self.masks[name][:] = (torch.rand(mask.shape) < density_dict[name]).float().data.cuda()
total_nonzero += density_dict[name] * mask.numel()
for name, weight in self.module.named_parameters():
if 'fc.weight' in name:
self.masks[name] = (torch.rand(weight.shape) < self.fc_density).float().data.cuda()
total_nonzero += self.fc_density * weight.numel()
total_params += weight.numel()
#print(f"layer: {name}, shape: {self.masks[name].shape}, density: {self.fc_density}")
#print(f"Overall sparsity {total_nonzero / total_params}") # can be removed
def _global_magnitude(self):
#print('initialize by global magnitude')
weight_abs = []
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
weight_abs.append(torch.abs(weight))
# Gather all scores in a single vector and normalise
all_scores = torch.cat([torch.flatten(x) for x in weight_abs])
num_params_to_keep = int(len(all_scores) * self.density)
threshold, _ = torch.topk(all_scores, num_params_to_keep, sorted=True)
acceptable_score = threshold[-1]
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.masks[name] = ((torch.abs(weight)) >= acceptable_score).float()
'''
UTILITY
'''
def _apply_mask(self):
for module in self.modules:
for name, tensor in module.named_parameters():
if name in self.masks:
tensor.data = tensor.data * self.masks[name]
def _discard_weight_partial_name(self, partial_name):
removed = set()
for name in list(self.masks.keys()):
if partial_name in name:
removed.add(name)
self.masks.pop(name)
##is this necessary?
i = 0
while i < len(self.names):
name = self.names[i]
if name in removed:
self.names.pop(i)
else:
i += 1
def _discard_type(self, nn_type):
for module in self.modules:
for name, module in module.named_modules():
if isinstance(module, nn_type):
self._discard_weight(name)
def _discard_weight(self, name):
if name in self.masks:
self.masks.pop(name)
elif name + '.weight' in self.masks:
self.masks.pop(name + '.weight')
def _get_gradient_for_weights(self, weight):
grad = weight.grad.clone()
return grad
def _get_momentum_for_weights(self, weight):
if 'exp_avg' in self.optimizer.state[weight]:
adam_m1 = self.optimizer.state[weight]['exp_avg']
adam_m2 = self.optimizer.state[weight]['exp_avg_sq']
grad = adam_m1 / (torch.sqrt(adam_m2) + 1e-08)
elif 'momentum_buffer' in self.optimizer.state[weight]:
grad = self.optimizer.state[weight]['momentum_buffer']
return grad
def _drate_scheduler(self):
death_rate_scheduler = CosineDecay(self.death_rate, len(self.train_loader) * self.epochs)
return death_rate_scheduler
def fired_masks_update(self):
ntotal_fired_weights = 0.0
ntotal_weights = 0.0
layer_fired_weights = {}
for module in self.modules:
for name, weight in module.named_parameters():
if name not in self.masks: continue
self.fired_masks[name] = self.masks[name].data.byte() | self.fired_masks[name].data.byte()
ntotal_fired_weights += float(self.fired_masks[name].sum().item())
ntotal_weights += float(self.fired_masks[name].numel())
layer_fired_weights[name] = float(self.fired_masks[name].sum().item()) / float(
self.fired_masks[name].numel())
#print('Layerwise percentage of the fired weights of', name, 'is:', layer_fired_weights[name])
total_fired_weights = ntotal_fired_weights / ntotal_weights
#print('The percentage of the total fired weights is:', total_fired_weights)
return layer_fired_weights, total_fired_weights
def _snip_forward_conv2d(self, x):
return F.conv2d(x, self.weight * self.weight_mask, self.bias,
self.stride, self.padding, self.dilation, self.groups)
def _snip_forward_linear(self, x):
return F.linear(x, self.weight * self.weight_mask, self.bias)