-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
289 lines (235 loc) · 12.3 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from PIL import Image
from torchvision import datasets
from torch.utils.data import Dataset
import os
import shutil
import requests
import zipfile
import io
import random
''' DATASETS '''
class iMNIST:
def __init__(self, train=True, transform=None, tasks=None):
if train:
self.mnist = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
else:
self.mnist = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
self.task_id = 0
self.task_labels = tasks
self.split_datasets = [list() for _ in range(len(tasks))]
for i, (_, label) in enumerate(self.mnist):
for task_id, task_labels in enumerate(self.task_labels):
if label in task_labels:
self.split_datasets[task_id].append(i)
def set_task(self, task_id):
self.task_id = task_id
def __len__(self):
return len(self.split_datasets[self.task_id])
def __getitem__(self, idx):
return self.mnist[self.split_datasets[self.task_id][idx]]
class iFashionMNIST:
def __init__(self, train=True, transform=None, tasks=None):
if train:
self.fashionmnist = datasets.FashionMNIST(root='./data', train=True, download=True, transform=transform)
else:
self.fashionmnist = datasets.FashionMNIST(root='./data', train=False, download=True, transform=transform)
self.task_id = 0
self.task_labels = tasks
self.split_datasets = [list() for _ in range(len(tasks))]
for i, (_, label) in enumerate(self.fashionmnist):
for task_id, task_labels in enumerate(self.task_labels):
if label in task_labels:
self.split_datasets[task_id].append(i)
def set_task(self, task_id):
self.task_id = task_id
def __len__(self):
return len(self.split_datasets[self.task_id])
def __getitem__(self, idx):
return self.fashionmnist[self.split_datasets[self.task_id][idx]]
class iEMNIST_letters:
def __init__(self, train=True, transform=None, tasks=None):
if train:
self.emnist = datasets.EMNIST(root='./data', split='letters', train=True, download=True, transform=transform)
else:
self.emnist = datasets.EMNIST(root='./data', split='letters', train=False, download=True, transform=transform)
self.task_id = 0
self.task_labels = tasks
self.split_datasets = [list() for _ in range(len(tasks))]
for i, (_, label) in enumerate(self.emnist):
for task_id, task_labels in enumerate(self.task_labels):
if label in task_labels:
self.split_datasets[task_id].append(i)
def set_task(self, task_id):
self.task_id = task_id
def __len__(self):
return len(self.split_datasets[self.task_id])
def __getitem__(self, idx):
return self.emnist[self.split_datasets[self.task_id][idx]]
class iCIFAR10:
def __init__(self, train=True, transform=None, tasks=None):
if train:
self.cifar10 = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
else:
self.cifar10 = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
self.task_id = 0
self.task_labels = tasks
self.split_datasets = [list() for _ in range(len(tasks))]
for i, (_, label) in enumerate(self.cifar10):
for task_id, task_labels in enumerate(self.task_labels):
if label in task_labels:
self.split_datasets[task_id].append(i)
def set_task(self, task_id):
self.task_id = task_id
def __len__(self):
return len(self.split_datasets[self.task_id])
def __getitem__(self, idx):
return self.cifar10[self.split_datasets[self.task_id][idx]]
class iCIFAR100:
def __init__(self, train=True, transform=None, tasks=None):
if train:
self.cifar100 = datasets.CIFAR100(root='./data', train=True, download=True, transform=transform)
else:
self.cifar100 = datasets.CIFAR100(root='./data', train=False, download=True, transform=transform)
self.task_id = 0
self.task_labels = tasks
self.split_datasets = [list() for _ in range(len(tasks))]
for i, (_, label) in enumerate(self.cifar100):
for task_id, task_labels in enumerate(self.task_labels):
if label in task_labels:
self.split_datasets[task_id].append(i)
def set_task(self, task_id):
self.task_id = task_id
def __len__(self):
return len(self.split_datasets[self.task_id])
def __getitem__(self, idx):
return self.cifar100[self.split_datasets[self.task_id][idx]]
class iTinyImageNet(Dataset):
def __init__(self, root_dir, train=True, transform=None, tasks=None):
if not os.path.exists('tiny-imagenet-200'):
print('Downloading the dataset...')
url = "http://cs231n.stanford.edu/tiny-imagenet-200.zip"
r = requests.get(url)
z = zipfile.ZipFile(io.BytesIO(r.content))
z.extractall()
self.root_dir = root_dir
self.DIR = os.path.join(root_dir, 'train') if train else os.path.join(root_dir, 'val')
if not train:
if os.path.isfile(os.path.join(self.DIR, 'val_annotations.txt')):
fp = open(os.path.join(self.DIR, 'val_annotations.txt'), 'r')
data = fp.readlines()
val_img_dict = {} # dict {.jpg:[class_name]}
for line in data:
words = line.split('\t')
val_img_dict[words[0]] = words[1]
fp.close()
for img, folder in val_img_dict.items():
newpath = (os.path.join(self.DIR, folder, 'images'))
if not os.path.exists(newpath):
os.makedirs(newpath)
if os.path.exists(os.path.join(self.DIR, 'images', img)):
os.rename(os.path.join(self.DIR, 'images', img), os.path.join(newpath, img))
if os.path.exists(os.path.join(self.DIR, 'images')):
os.rmdir(os.path.join(self.DIR, 'images'))
if os.path.exists(os.path.join(self.DIR, 'val_annotations.txt')):
os.remove(os.path.join(self.DIR, 'val_annotations.txt'))
self.transform = transform
self.tasks = tasks
self.task_id = 0
self.classes = os.listdir(self.DIR) # list [class_name]
self.class_to_id = {cls: i for i, cls in enumerate(self.classes)} # dict {class_name:[class_id]}
self.class_files = {class_id: os.listdir(os.path.join(self.DIR, class_name, 'images'))
for class_name, class_id in self.class_to_id.items()} # dict {class_id:[.jpg]}
self.task_imgs = {} # dict {task_id:[.jpg]}
self.task_class_ids = {} # dict {task_id:[class_id]}
for task_no, class_ids in enumerate(tasks):
samples_list = []
class_list = []
for class_id in class_ids:
samples_list.extend(self.class_files[class_id])
class_list.extend([class_id] * len(self.class_files[class_id]))
self.task_imgs[task_no] = samples_list
self.task_class_ids[task_no] = class_list
def __len__(self):
return len(self.task_class_ids[self.task_id])
def __getitem__(self, idx):
img_name = self.task_imgs[self.task_id][idx]
folder_name = next((self.classes[class_id] for class_id, imgs in self.class_files.items() if img_name in imgs), None)
img_path = os.path.join(self.DIR, folder_name, 'images', img_name)
image = Image.open(img_path)
class_id = self.task_class_ids[self.task_id][idx]
if self.transform:
image= image.convert('RGB')
image = self.transform(image)
return image, class_id
def set_task(self, task_id):
self.task_id = task_id
class iMiniImageNet(Dataset):
def __init__(self, root_dir, train=True, transform=None, tasks=None):
self.root_dir = root_dir
self.DIR = os.path.join(root_dir, 'train') if train else os.path.join(root_dir, 'validation')
if not os.path.exists(self.root_dir):
with zipfile.ZipFile('data/miniImageNet100.zip', "r") as zip_ref:
# Replace "path/to/dataset" with the path where you want to extract the files
zip_ref.extractall(self.root_dir)
if not os.path.exists(os.path.join(self.root_dir, 'validation')):
validation_dir = os.path.join(self.root_dir, 'validation')
# validation_fraction = 0.20
# Loop through each folder in the data directory
for folder_name in os.listdir(self.root_dir):
folder_path = os.path.join(self.root_dir, folder_name)
if os.path.isdir(folder_path):
# Create a validation folder for this folder
validation_folder = os.path.join(validation_dir, folder_name)
os.makedirs(validation_folder, exist_ok=True)
# Get a list of all the files in the folder
file_names = os.listdir(folder_path)
num_validation_files = 100
# num_validation_files = int(len(file_names) * validation_fraction)
random.shuffle(file_names)
# Move the first num_validation_files to the validation folder
for file_name in file_names[:num_validation_files]:
src_path = os.path.join(folder_path, file_name)
dst_path = os.path.join(validation_folder, file_name)
shutil.move(src_path, dst_path)
if not os.path.exists(os.path.join(self.root_dir, 'train')):
train_dir = os.path.join(self.root_dir, 'train')
# Create the train directory if it doesn't exist
os.makedirs(train_dir, exist_ok=True)
# Loop through each directory in the data directory
for dir_name in os.listdir(self.root_dir):
dir_path = os.path.join(self.root_dir, dir_name)
if os.path.isdir(dir_path) and dir_name != "validation" and dir_name != "train":
# Move the directory to the train directory
new_dir_path = os.path.join(train_dir, dir_name)
shutil.move(dir_path, new_dir_path)
self.transform = transform
self.tasks = tasks
self.task_id = 0
self.classes = os.listdir(self.DIR) # list [class_name]
self.class_to_id = {cls: i for i, cls in enumerate(self.classes)} # dict {class_name:[class_id]}
self.class_files = {class_id: os.listdir(os.path.join(self.DIR, class_name))
for class_name, class_id in self.class_to_id.items()} # dict {class_id:[.jpg]}
self.task_imgs = {} # dict {task_id:[.jpg]}
self.task_class_ids = {} # dict {task_id:[class_id]}
for task_no, class_ids in enumerate(tasks):
samples_list = []
class_list = []
for class_id in class_ids:
samples_list.extend(self.class_files[class_id])
class_list.extend([class_id] * len(self.class_files[class_id]))
self.task_imgs[task_no] = samples_list
self.task_class_ids[task_no] = class_list
def __len__(self):
return len(self.task_class_ids[self.task_id])
def __getitem__(self, idx):
img_name = self.task_imgs[self.task_id][idx]
folder_name = next((self.classes[class_id] for class_id, imgs in self.class_files.items() if img_name in imgs), None)
img_path = os.path.join(self.DIR, folder_name, img_name)
image = Image.open(img_path)
class_id = self.task_class_ids[self.task_id][idx]
if self.transform:
image = image.convert('RGB')
image = self.transform(image)
return image, class_id
def set_task(self, task_id):
self.task_id = task_id