-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcil_learner.py
234 lines (196 loc) · 10.2 KB
/
cil_learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import copy
import time
import torch
import optuna
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from masking import Masking
from backbones import ResNet18, VGG16, MobileNetV2, MLP_300_100
from utils import print_and_log
class Learner():
def __init__(self, args, data_manager):
self.used_params = {}
self.cur_task = 0
self._known_classes = 0
self.data_manager = data_manager
self.l2 = args.l2
self.momentum = args.momentum
self.epochs = args.epochs
self.optimizer = args.optimizer
self.backbone = args.backbone
self.isolate = args.isolate
self.regularize = args.regularize
self.fixed_topology = args.fixed_topology
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.NET = self._get_backbone(self.backbone, self.data_manager.num_classes)
self.total_params = sum(p.numel() for p in self.NET.parameters())
self.best_acc = -1.0
self.acc_matrix = np.zeros((self.data_manager.num_tasks, self.data_manager.num_tasks))
self.bwt = np.zeros(self.data_manager.num_tasks)
self.fwt = np.zeros(self.data_manager.num_tasks)
def after_task(self):
self.net.load_state_dict(torch.load(f'./models/{self.data_manager.dataset}.pt'))
self._update_used_params()
self._stack_subnets()
self._calculate_nonzeros()
self.cur_task += 1
self.best_acc = -1.0
self._known_classes += self.data_manager.num_classes_per_task
def train(self, trial):
print_and_log('\nTraining...')
self.net = self._get_backbone(self.backbone, self.data_manager.num_classes)
if self.cur_task !=0:
self.net.load_state_dict(torch.load(f'./models/{self.data_manager.dataset}_DENSE.pt'))
self.train_loader = self.data_manager.get_loader(self.data_manager.train_dataset, self.cur_task)
#self.test_loader = self.data_manager.get_loader(self.data_manager.test_dataset, self.cur_task)
lr = trial.suggest_float('lr', 0.05, 0.3, step = 0.05)
density = trial.suggest_float('density', 0.02, 0.1, step = 0.02)
optimizer, lr_scheduler = self._set_optimizer_and_scheduler(lr)
self.mask = Masking(net=self.net, density=density, sparse_init="erk", device=self.device)
for epoch in range(self.epochs):
task_t0 = time.time()
train_loss = 0
correct = 0
n = 0
for batch_idx, (inputs, targets) in enumerate(self.train_loader):
batch_t0 = time.time()
self.net.train()
inputs, targets = inputs.to(self.device), targets.to(torch.int64).to(self.device)
logits = self.net(inputs)
dummy_targets = targets - self._known_classes
loss = F.cross_entropy(logits[:, self._known_classes : (self._known_classes + self.data_manager.num_classes_per_task)], dummy_targets)
optimizer.zero_grad()
loss.backward()
train_loss += loss.item()
self._freeze_used_params()
optimizer.step()
self.mask.step(epoch)
preds = logits.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += preds.eq(targets.view_as(preds)).sum().item()
n += len(targets)
if batch_idx % 50 == 0:
batch_t1 = time.time()
batch_acc = 100 * correct / n
#test_acc = self._compute_accuracy(self.test_loader)
print_and_log('Batch {:3d} | Train: acc={:5.2f}% | time={:5.1f}ms |'.format(batch_idx, batch_acc, 1000*(batch_t1-batch_t0)))
#print(' Test: acc={:5.2f}% |'.format(test_acc), end='')
trial.report(batch_acc, batch_idx)
if trial.should_prune():
raise optuna.TrialPruned()
task_t1 = time.time()
lr_scheduler.step()
train_acc = 100 * correct / n
#test_acc = self._compute_accuracy(self.test_loader)
print_and_log('\nSummary => Train: loss={:.3f}, acc={:5.2f}% | time={:5.1f}s |'.format(train_loss, train_acc, (task_t1-task_t0)))
#print(' Test: acc={:5.2f}% |\n'.format(test_acc))
if train_acc > self.best_acc:
self.best_acc = train_acc
self._save_checkpoint()
self._save_mask()
return train_acc
def evaluate(self):
print_and_log('\nTesting...')
self.NET.load_state_dict(torch.load('./models/{0}_DENSE.pt'.format(self.data_manager.dataset)))
#acc_matrix
for task in range(self.cur_task):
for t in range(task+1):
self.test_loader = self.data_manager.get_loader(self.data_manager.test_dataset, t)
t0=time.time()
selected_mask = self._mask_selection(t)
t1=time.time()
self.net = self._set_mask(selected_mask)
test_accuracy = self._compute_accuracy(self.test_loader)
self.acc_matrix[task, t] = test_accuracy
mask_time=(t1-t0)
print_and_log('Time Spent to Identify the Expert(s) at task {}: {:.2f} sec '.format(task, mask_time))
def report_scores(self):
print_and_log('\nACCURACY MATRIX:\n {}'.format(self.acc_matrix))
#bwt_matrix
for task in range(self.cur_task-1):
self.bwt[task] = self.acc_matrix[self.cur_task-1, task] - self.acc_matrix[task, task]
print_and_log('\nBWT:\n {}'.format(self.bwt))
#inc_matrix
final_acc = self.acc_matrix[-1]
inc_acc = np.zeros_like(final_acc)
for i in range(len(final_acc)):
inc_acc[i] = final_acc[i] if i == 0 else np.mean(final_acc[:i+1])
print_and_log('\nINCREMENTAL ACCURACY:\n {}'.format(inc_acc))
print_and_log('\nAverage BWT:\n {}'.format(np.mean(self.bwt[:-1])))
def _compute_accuracy(self, loader, for_mask=False):
self.net.eval()
correct, n = 0, 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(loader):
inputs, targets = inputs.to(self.device), targets.to(torch.int64).to(self.device)
logits = self.net(inputs)
preds = logits.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += preds.eq(targets.view_as(preds)).sum().item()
n += len(targets)
if for_mask:
break
return np.around(100 * correct / n, decimals=2)
def _set_optimizer_and_scheduler(self, lr):
if self.optimizer == 'sgd':
optimizer = optim.SGD(self.net.parameters(), lr=lr, momentum=self.momentum, weight_decay=self.l2, nesterov=True)
elif self.optimizer == 'adam':
optimizer = optim.Adam(self.net.parameters(), lr=lr, weight_decay=self.l2)
else:
print_and_log('Unknown optimizer: {0}'.format(optimizer))
raise Exception('Unknown optimizer.')
learning_rate_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, gamma=0.1, milestones=[int(self.epochs * 1/2), int(self.epochs * 3/4)])
return optimizer, learning_rate_scheduler
def _get_backbone(self, backbone, num_classes):
if backbone == 'resnet18':
net = ResNet18(num_classes).to(self.device)
elif backbone == 'mobilenetv2':
net = MobileNetV2(num_classes).to(self.device)
elif backbone == 'vgg16':
net = VGG16('like', num_classes).to(self.device)
elif backbone == 'mlp':
net = MLP_300_100(num_classes).to(self.device)
return net
def _update_used_params(self):
current_mask = torch.load(f'./masks/{self.data_manager.dataset}_task{self.cur_task}_mask.pt')
self.used_params = {k: self.used_params.get(k, 0) + current_mask.get(k, 0) for k in set(self.used_params) | set(current_mask)}
def _calculate_nonzeros(self):
non_zero_count = 0
for nonzeros in self.used_params.values():
non_zero_count += torch.count_nonzero(nonzeros)
print_and_log('\nOverall Sparsity: {:.4f}.'.format(non_zero_count/self.total_params))
print_and_log('=' * 60)
def _freeze_used_params(self):
if self.cur_task != 0 and self.isolate:
for name, params in self.net.named_parameters():
if name in self.mask.masks:
params.grad[self.used_params[name] != 0] = 0
def _stack_subnets(self):
if self.cur_task == 0:
self.NET = copy.deepcopy(self.net)
else:
for (name, param), (old_name, old_param) in zip(self.net.named_parameters(), self.NET.named_parameters()):
param.data[param == 0] = old_param.data[param == 0]
self.NET = copy.deepcopy(self.net)
torch.save(self.NET.state_dict(), './models/{0}_DENSE.pt'.format(self.data_manager.dataset))
def _set_mask(self, task_id):
task_mask = torch.load(f'./masks/{self.data_manager.dataset}_task{task_id}_mask.pt')
masked_net = copy.deepcopy(self.NET)
for n, t in masked_net.named_parameters():
if n in task_mask: t.data = t.data * task_mask[n]
return masked_net
def _save_checkpoint(self):
torch.save(self.net.state_dict(), './models/{0}.pt'.format(self.data_manager.dataset))
def _save_mask(self):
torch.save(self.mask.masks, './masks/{0}_task{1}_mask.pt'.format(self.data_manager.dataset, self.cur_task))
def _mask_selection(self, task):
mask_selection_loader = self.data_manager.get_mask_selection_loader(self.data_manager.test_dataset, task)
#t0=time.time()
max_out = []
for mask in range(task+1):
self.net = self._set_mask(mask)
mask_acc = self._compute_accuracy(mask_selection_loader, for_mask=True)
max_out.append(mask_acc)
selected_mask = np.argmax(max_out)
#t1=time.time()
#print_and_log('Time Spend to Identify the Expert(s) at task {}: {} sec '.format(task, (t1-t0)))
return selected_mask