-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun_exp.py
329 lines (274 loc) · 12.2 KB
/
run_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os.path as osp
import shutil
import numpy as np
import argparse
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torch.nn import Linear, Sequential, ReLU, BatchNorm1d as BN
from torch_scatter import scatter_mean, scatter_max
from torch_geometric.datasets import TUDataset
from torch_geometric.utils import degree
from torch_geometric.nn import GCNConv, GINConv, global_add_pool
import torch_geometric.transforms as T
from PlanarSATPairsDataset import PlanarSATPairsDataset
from k_gnn import GraphConv, max_pool
from k_gnn import TwoMalkin, ConnectedThreeMalkin
from dataloader import DataLoader # use a custom dataloader to handle subgraphs
from utils import create_subgraphs
import pdb
parser = argparse.ArgumentParser(description='Nested GNN for EXP/CEXP datasets')
parser.add_argument('--model', type=str, default='GIN') # Base GNN used, GIN or GCN
parser.add_argument('--h', type=int, default=3,
help='largest height of rooted subgraphs to simulate')
parser.add_argument('--layers', type=int, default=8) # Number of GNN layers
parser.add_argument('--width', type=int, default=64) # Dimensionality of GNN embeddings
parser.add_argument('--epochs', type=int, default=500) # Number of training epochs
parser.add_argument('--dataset', type=str, default='EXP') # Dataset being used
parser.add_argument('--learnRate', type=float, default=0.001) # Learning Rate
args = parser.parse_args()
def print_or_log(input_data, log=False, log_file_path="Debug.txt"):
if not log: # If not logging, we should just print
print(input_data)
else: # Logging
log_file = open(log_file_path, "a+")
log_file.write(str(input_data) + "\r\n")
log_file.close() # Keep the file available throughout execution
class MyFilter(object):
def __call__(self, data):
return True # No Filtering
class MyPreTransform(object):
def __call__(self, data):
data.x = F.one_hot(data.x[:, 0], num_classes=2).to(torch.float) # Convert node labels to one-hot
return data
# Command Line Arguments
DATASET = args.dataset
LAYERS = args.layers
EPOCHS = args.epochs
WIDTH = args.width
LEARNING_RATE = args.learnRate
MODEL = f"Nested{args.model}-"
if LEARNING_RATE != 0.001:
MODEL = MODEL+"lr"+str(LEARNING_RATE)+"-"
BATCH = 20
MODULO = 4
MOD_THRESH = 1
path = 'data/' + DATASET
pre_transform = None
if args.h is not None:
def pre_transform(g):
return create_subgraphs(g, args.h, node_label='no', use_rd=False,
subgraph_pretransform=None)
shutil.rmtree(path + '/processed')
dataset = PlanarSATPairsDataset(root=path,
pre_transform=T.Compose([MyPreTransform(), pre_transform]),
pre_filter=MyFilter())
class NestedGCN(torch.nn.Module):
def __init__(self, num_layers, hidden):
super(NestedGCN, self).__init__()
self.conv1 = GCNConv(dataset.num_features, hidden)
self.convs = torch.nn.ModuleList()
for i in range(num_layers - 1):
self.convs.append(GCNConv(hidden, hidden))
self.lin1 = torch.nn.Linear(hidden, hidden)
self.lin2 = Linear(hidden, dataset.num_classes)
def reset_parameters(self):
self.conv1.reset_parameters()
for conv in self.convs:
conv.reset_parameters()
self.lin1.reset_parameters()
self.lin2.reset_parameters()
def forward(self, data):
edge_index, batch = data.edge_index, data.batch
if 'x' in data:
x = data.x
else:
x = torch.ones([data.num_nodes, 1]).to(edge_index.device)
x = self.conv1(x, edge_index)
for conv in self.convs:
x = conv(x, edge_index)
x = global_add_pool(x, data.node_to_subgraph)
x = global_add_pool(x, data.subgraph_to_graph)
x = F.relu(self.lin1(x))
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin2(x)
return F.log_softmax(x, dim=1)
def __repr__(self):
return self.__class__.__name__
class NestedGIN(torch.nn.Module):
def __init__(self, num_layers, hidden):
super(NestedGIN, self).__init__()
self.conv1 = GINConv(
Sequential(
Linear(dataset.num_features, hidden),
ReLU(),
Linear(hidden, hidden),
ReLU(),
),
train_eps=False)
self.convs = torch.nn.ModuleList()
for i in range(num_layers - 1):
self.convs.append(
GINConv(
Sequential(
Linear(hidden, hidden),
ReLU(),
Linear(hidden, hidden),
ReLU(),
),
train_eps=False))
self.lin1 = torch.nn.Linear(hidden, hidden)
self.lin2 = Linear(hidden, hidden)
def reset_parameters(self):
self.conv1.reset_parameters()
for conv in self.convs:
conv.reset_parameters()
self.lin1.reset_parameters()
self.lin2.reset_parameters()
def forward(self, data):
edge_index, batch = data.edge_index, data.batch
if 'x' in data:
x = data.x
else:
x = torch.ones([data.num_nodes, 1]).to(edge_index.device)
x = self.conv1(x, edge_index)
for conv in self.convs:
x = conv(x, edge_index)
x = global_add_pool(x, data.node_to_subgraph)
x = global_add_pool(x, data.subgraph_to_graph)
x = F.relu(self.lin1(x))
x = F.dropout(x, p=0.5, training=self.training)
x = self.lin2(x)
return F.log_softmax(x, dim=1)
def __repr__(self):
return self.__class__.__name__
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.model == 'GIN':
model = NestedGIN(args.layers, args.width).to(device)
elif args.model == 'GCN':
model = NestedGCN(args.layers, args.width).to(device)
else:
raise NotImplementedError('model type not supported')
def train(epoch, loader, optimizer):
model.train()
loss_all = 0
for data in loader:
data = data.to(device)
optimizer.zero_grad()
loss = F.nll_loss(model(data), data.y)
loss.backward()
loss_all += data.num_graphs * loss.item()
optimizer.step()
return loss_all / len(loader.dataset)
def val(loader):
model.eval()
loss_all = 0
for data in loader:
data = data.to(device)
loss_all += F.nll_loss(model(data), data.y, reduction='sum').item()
return loss_all / len(loader.dataset)
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
nb_trials = 1 # Support majority vote, but single trial is default
successful_trials = torch.zeros_like(data.y)
for i in range(nb_trials): # Majority Vote
pred = model(data).max(1)[1]
successful_trials += pred.eq(data.y)
successful_trials = successful_trials > (nb_trials // 2)
correct += successful_trials.sum().item()
return correct / len(loader.dataset)
acc = []
tr_acc = []
#SPLITS = 2
SPLITS = 10
tr_accuracies = np.zeros((EPOCHS, SPLITS))
tst_accuracies = np.zeros((EPOCHS, SPLITS))
tst_exp_accuracies = np.zeros((EPOCHS, SPLITS))
tst_lrn_accuracies = np.zeros((EPOCHS, SPLITS))
for i in range(SPLITS):
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.7, patience=5, min_lr=LEARNING_RATE)
n = len(dataset) // SPLITS
test_mask = torch.zeros(len(dataset), dtype=torch.bool)
test_exp_mask = torch.zeros(len(dataset), dtype=torch.bool)
test_lrn_mask = torch.zeros(len(dataset), dtype=torch.bool)
test_mask[i * n:(i + 1) * n] = 1 # Now set the masks
learning_indices = [x for idx, x in enumerate(range(n * i, n * (i+1))) if x % MODULO <= MOD_THRESH]
test_lrn_mask[learning_indices] = 1
exp_indices = [x for idx, x in enumerate(range(n * i, n * (i+1))) if x % MODULO > MOD_THRESH]
test_exp_mask[exp_indices] = 1
# Now load the datasets
test_dataset = dataset[test_mask]
test_exp_dataset = dataset[test_exp_mask]
test_lrn_dataset = dataset[test_lrn_mask]
train_dataset = dataset[~test_mask]
n = len(train_dataset) // SPLITS
val_mask = torch.zeros(len(train_dataset), dtype=torch.bool)
val_mask[i * n:(i + 1) * n] = 1
val_dataset = train_dataset[val_mask]
train_dataset = train_dataset[~val_mask]
val_loader = DataLoader(val_dataset, batch_size=BATCH)
test_loader = DataLoader(test_dataset, batch_size=BATCH)
test_exp_loader = DataLoader(test_exp_dataset, batch_size=BATCH) # These are the new test splits
test_lrn_loader = DataLoader(test_lrn_dataset, batch_size=BATCH)
train_loader = DataLoader(train_dataset, batch_size=BATCH, shuffle=True)
print_or_log('---------------- Split {} ----------------'.format(i),
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
best_val_loss, test_acc = 100, 0
for epoch in tqdm(range(EPOCHS)):
lr = scheduler.optimizer.param_groups[0]['lr']
train_loss = train(epoch, train_loader, optimizer)
val_loss = val(val_loader)
scheduler.step(val_loss)
if best_val_loss >= val_loss:
best_val_loss = val_loss
train_acc = test(train_loader)
test_acc = test(test_loader)
test_exp_acc = test(test_exp_loader)
test_lrn_acc = test(test_lrn_loader)
tr_accuracies[epoch, i] = train_acc
tst_accuracies[epoch, i] = test_acc
tst_exp_accuracies[epoch, i] = test_exp_acc
tst_lrn_accuracies[epoch, i] = test_lrn_acc
print_or_log('Epoch: {:03d}, LR: {:7f}, Train Loss: {:.7f}, '
'Val Loss: {:.7f}, Test Acc: {:.7f}, Exp Acc: {:.7f}, Lrn Acc: {:.7f}, Train Acc: {:.7f}'.format(
epoch+1, lr, train_loss, val_loss, test_acc, test_exp_acc, test_lrn_acc, train_acc),log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
acc.append(test_acc)
tr_acc.append(train_acc)
acc = torch.tensor(acc)
tr_acc = torch.tensor(tr_acc)
print_or_log('---------------- Final Result ----------------',
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
print_or_log('Mean: {:7f}, Std: {:7f}'.format(acc.mean(), acc.std()),
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
print_or_log('Tr Mean: {:7f}, Std: {:7f}'.format(tr_acc.mean(), tr_acc.std()),
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
'''
print_or_log('Average Acros Splits', log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
print_or_log('Training Acc:', log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
mean_tr_accuracies = np.mean(tr_accuracies, axis=1)
for epoch in range(EPOCHS):
print_or_log('Epoch '+str(epoch+1)+':'+str(mean_tr_accuracies[epoch]),
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
print_or_log('Testing Acc:', log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
mean_tst_accuracies = np.mean(tst_accuracies, axis=1)
st_d_tst_accuracies = np.std(tst_accuracies, axis=1)
for epoch in range(EPOCHS):
print_or_log('Epoch '+str(epoch+1)+':'+str(mean_tst_accuracies[epoch])+"/"+str(st_d_tst_accuracies[epoch]),
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
print_or_log('Testing Exp Acc:', log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
mean_tst_e_accuracies = np.mean(tst_exp_accuracies, axis=1)
for epoch in range(EPOCHS):
print_or_log('Epoch '+str(epoch+1)+':'+str(mean_tst_e_accuracies[epoch]),
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
print_or_log('Testing Lrn Acc:', log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
mean_tst_l_accuracies = np.mean(tst_lrn_accuracies, axis=1)
for epoch in range(EPOCHS):
print_or_log('Epoch '+str(epoch+1)+':'+str(mean_tst_l_accuracies[epoch]),
log_file_path="log"+MODEL+DATASET+","+str(LAYERS)+","+str(WIDTH)+".txt")
'''