forked from RL-VIG/LibFewShot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_trainer.py
57 lines (36 loc) · 1.52 KB
/
run_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
import sys
sys.dont_write_bytecode = True
from core.config import Config
from core import Trainer
if __name__ == "__main__":
name="CAN_Conv64F_1"
# reset final results
f = open("final_result.csv", "w")
f.write("")
f.close()
f = open("final_result.csv", "a")
f.write("Model" + "," + "Number of Shots" + "," + "Backbone" + ","+"Train Accuracy" + "," + "Best Train Accuracy" + "," + "Test 1 Accuracy" + ","+"Test 1 Best Accuracy" + ","+"Validation Accuracy"+"," + "Best Validation Accuracy" +","+"Test 2 Final Accuracy" + "," + "Test 2 Best Accuracy\n")
f.write(name + "," + str(1) + "," + "Conv64F" )
config = Config("config/test_install.yaml").get_config_dict()
rank = 0 # Set the rank to 0 for single GPU or CPU
trainer = Trainer(rank, config) # Pass both rank and config arguments
# trainer = Trainer(rank, config, name, f, printName)
trainer.train_loop(rank)
# # -*- coding: utf-8 -*-
# import sys
# sys.dont_write_bytecode = True
# import torch
# import os
# from core.config import Config
# from core import Trainer
# def main(rank, config):
# trainer = Trainer(rank, config)
# trainer.train_loop(rank)
# if __name__ == "__main__":
# config = Config("./config/proto.yaml").get_config_dict()
# if config["n_gpu"] > 1:
# os.environ["CUDA_VISIBLE_DEVICES"] = config["device_ids"]
# torch.multiprocessing.spawn(main, nprocs=config["n_gpu"], args=(config,))
# else:
# main(0, config)