-
-
Notifications
You must be signed in to change notification settings - Fork 35.6k
/
Copy pathBufferGeometry.js
1449 lines (957 loc) · 32.4 KB
/
BufferGeometry.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import { Vector3 } from '../math/Vector3.js';
import { Vector2 } from '../math/Vector2.js';
import { Box3 } from '../math/Box3.js';
import { EventDispatcher } from './EventDispatcher.js';
import { BufferAttribute, Float32BufferAttribute, Uint16BufferAttribute, Uint32BufferAttribute } from './BufferAttribute.js';
import { Sphere } from '../math/Sphere.js';
import { Object3D } from './Object3D.js';
import { Matrix4 } from '../math/Matrix4.js';
import { Matrix3 } from '../math/Matrix3.js';
import { generateUUID } from '../math/MathUtils.js';
import { arrayNeedsUint32 } from '../utils.js';
let _id = 0;
const _m1 = /*@__PURE__*/ new Matrix4();
const _obj = /*@__PURE__*/ new Object3D();
const _offset = /*@__PURE__*/ new Vector3();
const _box = /*@__PURE__*/ new Box3();
const _boxMorphTargets = /*@__PURE__*/ new Box3();
const _vector = /*@__PURE__*/ new Vector3();
/**
* A representation of mesh, line, or point geometry. Includes vertex
* positions, face indices, normals, colors, UVs, and custom attributes
* within buffers, reducing the cost of passing all this data to the GPU.
*
* ```js
* const geometry = new THREE.BufferGeometry();
* // create a simple square shape. We duplicate the top left and bottom right
* // vertices because each vertex needs to appear once per triangle.
* const vertices = new Float32Array( [
* -1.0, -1.0, 1.0, // v0
* 1.0, -1.0, 1.0, // v1
* 1.0, 1.0, 1.0, // v2
*
* 1.0, 1.0, 1.0, // v3
* -1.0, 1.0, 1.0, // v4
* -1.0, -1.0, 1.0 // v5
* ] );
* // itemSize = 3 because there are 3 values (components) per vertex
* geometry.setAttribute( 'position', new THREE.BufferAttribute( vertices, 3 ) );
* const material = new THREE.MeshBasicMaterial( { color: 0xff0000 } );
* const mesh = new THREE.Mesh( geometry, material );
* ```
*
* @augments EventDispatcher
*/
class BufferGeometry extends EventDispatcher {
/**
* Constructs a new geometry.
*/
constructor() {
super();
/**
* This flag can be used for type testing.
*
* @type {boolean}
* @readonly
* @default true
*/
this.isBufferGeometry = true;
/**
* The ID of the geometry.
*
* @name BufferGeometry#id
* @type {number}
* @readonly
*/
Object.defineProperty( this, 'id', { value: _id ++ } );
/**
* The UUID of the geometry.
*
* @type {string}
* @readonly
*/
this.uuid = generateUUID();
/**
* The name of the geometry.
*
* @type {string}
*/
this.name = '';
this.type = 'BufferGeometry';
/**
* Allows for vertices to be re-used across multiple triangles; this is
* called using "indexed triangles". Each triangle is associated with the
* indices of three vertices. This attribute therefore stores the index of
* each vertex for each triangular face. If this attribute is not set, the
* renderer assumes that each three contiguous positions represent a single triangle.
*
* @type {?BufferAttribute}
* @default null
*/
this.index = null;
/**
* A (storage) buffer attribute which was generated with a compute shader and
* now defines indirect draw calls.
*
* Can only be used with {@link WebGPURenderer} and a WebGPU backend.
*
* @type {?BufferAttribute}
* @default null
*/
this.indirect = null;
/**
* This dictionary has as id the name of the attribute to be set and as value
* the buffer attribute to set it to. Rather than accessing this property directly,
* use `setAttribute()` and `getAttribute()` to access attributes of this geometry.
*
* @type {Object<string,(BufferAttribute|InterleavedBufferAttribute)>}
*/
this.attributes = {};
/**
* This dictionary holds the morph targets of the geometry.
*
* Note: Once the geometry has been rendered, the morph attribute data cannot
* be changed. You will have to call `dispose()?, and create a new geometry instance.
*
* @type {Object}
*/
this.morphAttributes = {};
/**
* Used to control the morph target behavior; when set to `true`, the morph
* target data is treated as relative offsets, rather than as absolute
* positions/normals.
*
* @type {boolean}
* @default false
*/
this.morphTargetsRelative = false;
/**
* Split the geometry into groups, each of which will be rendered in a
* separate draw call. This allows an array of materials to be used with the geometry.
*
* Use `addGroup()` and `clearGroups()` to edit groups, rather than modifying this array directly.
*
* Every vertex and index must belong to exactly one group — groups must not share vertices or
* indices, and must not leave vertices or indices unused.
*
* @type {Array<Object>}
*/
this.groups = [];
/**
* Bounding box for the geometry which can be calculated with `computeBoundingBox()`.
*
* @type {Box3}
* @default null
*/
this.boundingBox = null;
/**
* Bounding sphere for the geometry which can be calculated with `computeBoundingSphere()`.
*
* @type {Sphere}
* @default null
*/
this.boundingSphere = null;
/**
* Determines the part of the geometry to render. This should not be set directly,
* instead use `setDrawRange()`.
*
* @type {{start:number,count:number}}
*/
this.drawRange = { start: 0, count: Infinity };
/**
* An object that can be used to store custom data about the geometry.
* It should not hold references to functions as these will not be cloned.
*
* @type {Object}
*/
this.userData = {};
}
/**
* Returns the index of this geometry.
*
* @return {?BufferAttribute} The index. Returns `null` if no index is defined.
*/
getIndex() {
return this.index;
}
/**
* Sets the given index to this geometry.
*
* @param {Array<number>|BufferAttribute} index - The index to set.
* @return {BufferGeometry} A reference to this instance.
*/
setIndex( index ) {
if ( Array.isArray( index ) ) {
this.index = new ( arrayNeedsUint32( index ) ? Uint32BufferAttribute : Uint16BufferAttribute )( index, 1 );
} else {
this.index = index;
}
return this;
}
/**
* Sets the given indirect attribute to this geometry.
*
* @param {BufferAttribute} indirect - The attribute holding indirect draw calls.
* @return {BufferGeometry} A reference to this instance.
*/
setIndirect( indirect ) {
this.indirect = indirect;
return this;
}
/**
* Returns the indirect attribute of this geometry.
*
* @return {?BufferAttribute} The indirect attribute. Returns `null` if no indirect attribute is defined.
*/
getIndirect() {
return this.indirect;
}
/**
* Returns the buffer attribute for the given name.
*
* @param {string} name - The attribute name.
* @return {BufferAttribute|InterleavedBufferAttribute|undefined} The buffer attribute.
* Returns `undefined` if not attribute has been found.
*/
getAttribute( name ) {
return this.attributes[ name ];
}
/**
* Sets the given attribute for the given name.
*
* @param {string} name - The attribute name.
* @param {BufferAttribute|InterleavedBufferAttribute} attribute - The attribute to set.
* @return {BufferGeometry} A reference to this instance.
*/
setAttribute( name, attribute ) {
this.attributes[ name ] = attribute;
return this;
}
/**
* Deletes the attribute for the given name.
*
* @param {string} name - The attribute name to delete.
* @return {BufferGeometry} A reference to this instance.
*/
deleteAttribute( name ) {
delete this.attributes[ name ];
return this;
}
/**
* Returns `true` if this geometry has an attribute for the given name.
*
* @param {string} name - The attribute name.
* @return {boolean} Whether this geometry has an attribute for the given name or not.
*/
hasAttribute( name ) {
return this.attributes[ name ] !== undefined;
}
/**
* Adds a group to this geometry.
*
* @param {number} start - The first element in this draw call. That is the first
* vertex for non-indexed geometry, otherwise the first triangle index.
* @param {number} count - Specifies how many vertices (or indices) are part of this group.
* @param {number} [materialIndex=0] - The material array index to use.
*/
addGroup( start, count, materialIndex = 0 ) {
this.groups.push( {
start: start,
count: count,
materialIndex: materialIndex
} );
}
/**
* Clears all groups.
*/
clearGroups() {
this.groups = [];
}
/**
* Sets the draw range for this geometry.
*
* @param {number} start - The first vertex for non-indexed geometry, otherwise the first triangle index.
* @param {number} count - For non-indexed BufferGeometry, `count` is the number of vertices to render.
* For indexed BufferGeometry, `count` is the number of indices to render.
*/
setDrawRange( start, count ) {
this.drawRange.start = start;
this.drawRange.count = count;
}
/**
* Applies the given 4x4 transformation matrix to the geometry.
*
* @param {Matrix4} matrix - The matrix to apply.
* @return {BufferGeometry} A reference to this instance.
*/
applyMatrix4( matrix ) {
const position = this.attributes.position;
if ( position !== undefined ) {
position.applyMatrix4( matrix );
position.needsUpdate = true;
}
const normal = this.attributes.normal;
if ( normal !== undefined ) {
const normalMatrix = new Matrix3().getNormalMatrix( matrix );
normal.applyNormalMatrix( normalMatrix );
normal.needsUpdate = true;
}
const tangent = this.attributes.tangent;
if ( tangent !== undefined ) {
tangent.transformDirection( matrix );
tangent.needsUpdate = true;
}
if ( this.boundingBox !== null ) {
this.computeBoundingBox();
}
if ( this.boundingSphere !== null ) {
this.computeBoundingSphere();
}
return this;
}
/**
* Applies the rotation represented by the Quaternion to the geometry.
*
* @param {Quaternion} q - The Quaternion to apply.
* @return {BufferGeometry} A reference to this instance.
*/
applyQuaternion( q ) {
_m1.makeRotationFromQuaternion( q );
this.applyMatrix4( _m1 );
return this;
}
/**
* Rotates the geometry about the X axis. This is typically done as a one time
* operation, and not during a loop. Use {@link Object3D#rotation} for typical
* real-time mesh rotation.
*
* @param {number} angle - The angle in radians.
* @return {BufferGeometry} A reference to this instance.
*/
rotateX( angle ) {
// rotate geometry around world x-axis
_m1.makeRotationX( angle );
this.applyMatrix4( _m1 );
return this;
}
/**
* Rotates the geometry about the Y axis. This is typically done as a one time
* operation, and not during a loop. Use {@link Object3D#rotation} for typical
* real-time mesh rotation.
*
* @param {number} angle - The angle in radians.
* @return {BufferGeometry} A reference to this instance.
*/
rotateY( angle ) {
// rotate geometry around world y-axis
_m1.makeRotationY( angle );
this.applyMatrix4( _m1 );
return this;
}
/**
* Rotates the geometry about the Z axis. This is typically done as a one time
* operation, and not during a loop. Use {@link Object3D#rotation} for typical
* real-time mesh rotation.
*
* @param {number} angle - The angle in radians.
* @return {BufferGeometry} A reference to this instance.
*/
rotateZ( angle ) {
// rotate geometry around world z-axis
_m1.makeRotationZ( angle );
this.applyMatrix4( _m1 );
return this;
}
/**
* Translates the geometry. This is typically done as a one time
* operation, and not during a loop. Use {@link Object3D#position} for typical
* real-time mesh rotation.
*
* @param {number} x - The x offset.
* @param {number} y - The y offset.
* @param {number} z - The z offset.
* @return {BufferGeometry} A reference to this instance.
*/
translate( x, y, z ) {
// translate geometry
_m1.makeTranslation( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
/**
* Scales the geometry. This is typically done as a one time
* operation, and not during a loop. Use {@link Object3D#scale} for typical
* real-time mesh rotation.
*
* @param {number} x - The x scale.
* @param {number} y - The y scale.
* @param {number} z - The z scale.
* @return {BufferGeometry} A reference to this instance.
*/
scale( x, y, z ) {
// scale geometry
_m1.makeScale( x, y, z );
this.applyMatrix4( _m1 );
return this;
}
/**
* Rotates the geometry to face a point in 3D space. This is typically done as a one time
* operation, and not during a loop. Use {@link Object3D#lookAt} for typical
* real-time mesh rotation.
*
* @param {Vector3} vector - The target point.
* @return {BufferGeometry} A reference to this instance.
*/
lookAt( vector ) {
_obj.lookAt( vector );
_obj.updateMatrix();
this.applyMatrix4( _obj.matrix );
return this;
}
/**
* Center the geometry based on its bounding box.
*
* @return {BufferGeometry} A reference to this instance.
*/
center() {
this.computeBoundingBox();
this.boundingBox.getCenter( _offset ).negate();
this.translate( _offset.x, _offset.y, _offset.z );
return this;
}
/**
* Defines a geometry by creating a `position` attribute based on the given array of points. The array
* can hold 2D or 3D vectors. When using two-dimensional data, the `z` coordinate for all vertices is
* set to `0`.
*
* If the method is used with an existing `position` attribute, the vertex data are overwritten with the
* data from the array. The length of the array must match the vertex count.
*
* @param {Array<Vector2>|Array<Vector3>} points - The points.
* @return {BufferGeometry} A reference to this instance.
*/
setFromPoints( points ) {
const positionAttribute = this.getAttribute( 'position' );
if ( positionAttribute === undefined ) {
const position = [];
for ( let i = 0, l = points.length; i < l; i ++ ) {
const point = points[ i ];
position.push( point.x, point.y, point.z || 0 );
}
this.setAttribute( 'position', new Float32BufferAttribute( position, 3 ) );
} else {
const l = Math.min( points.length, positionAttribute.count ); // make sure data do not exceed buffer size
for ( let i = 0; i < l; i ++ ) {
const point = points[ i ];
positionAttribute.setXYZ( i, point.x, point.y, point.z || 0 );
}
if ( points.length > positionAttribute.count ) {
console.warn( 'THREE.BufferGeometry: Buffer size too small for points data. Use .dispose() and create a new geometry.' );
}
positionAttribute.needsUpdate = true;
}
return this;
}
/**
* Computes the bounding box of the geometry, and updates the `boundingBox` member.
* The bounding box is not computed by the engine; it must be computed by your app.
* You may need to recompute the bounding box if the geometry vertices are modified.
*/
computeBoundingBox() {
if ( this.boundingBox === null ) {
this.boundingBox = new Box3();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox(): GLBufferAttribute requires a manual bounding box.', this );
this.boundingBox.set(
new Vector3( - Infinity, - Infinity, - Infinity ),
new Vector3( + Infinity, + Infinity, + Infinity )
);
return;
}
if ( position !== undefined ) {
this.boundingBox.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_box.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector.addVectors( this.boundingBox.min, _box.min );
this.boundingBox.expandByPoint( _vector );
_vector.addVectors( this.boundingBox.max, _box.max );
this.boundingBox.expandByPoint( _vector );
} else {
this.boundingBox.expandByPoint( _box.min );
this.boundingBox.expandByPoint( _box.max );
}
}
}
} else {
this.boundingBox.makeEmpty();
}
if ( isNaN( this.boundingBox.min.x ) || isNaN( this.boundingBox.min.y ) || isNaN( this.boundingBox.min.z ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingBox(): Computed min/max have NaN values. The "position" attribute is likely to have NaN values.', this );
}
}
/**
* Computes the bounding sphere of the geometry, and updates the `boundingSphere` member.
* The engine automatically computes the bounding sphere when it is needed, e.g., for ray casting or view frustum culling.
* You may need to recompute the bounding sphere if the geometry vertices are modified.
*/
computeBoundingSphere() {
if ( this.boundingSphere === null ) {
this.boundingSphere = new Sphere();
}
const position = this.attributes.position;
const morphAttributesPosition = this.morphAttributes.position;
if ( position && position.isGLBufferAttribute ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): GLBufferAttribute requires a manual bounding sphere.', this );
this.boundingSphere.set( new Vector3(), Infinity );
return;
}
if ( position ) {
// first, find the center of the bounding sphere
const center = this.boundingSphere.center;
_box.setFromBufferAttribute( position );
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
_boxMorphTargets.setFromBufferAttribute( morphAttribute );
if ( this.morphTargetsRelative ) {
_vector.addVectors( _box.min, _boxMorphTargets.min );
_box.expandByPoint( _vector );
_vector.addVectors( _box.max, _boxMorphTargets.max );
_box.expandByPoint( _vector );
} else {
_box.expandByPoint( _boxMorphTargets.min );
_box.expandByPoint( _boxMorphTargets.max );
}
}
}
_box.getCenter( center );
// second, try to find a boundingSphere with a radius smaller than the
// boundingSphere of the boundingBox: sqrt(3) smaller in the best case
let maxRadiusSq = 0;
for ( let i = 0, il = position.count; i < il; i ++ ) {
_vector.fromBufferAttribute( position, i );
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector ) );
}
// process morph attributes if present
if ( morphAttributesPosition ) {
for ( let i = 0, il = morphAttributesPosition.length; i < il; i ++ ) {
const morphAttribute = morphAttributesPosition[ i ];
const morphTargetsRelative = this.morphTargetsRelative;
for ( let j = 0, jl = morphAttribute.count; j < jl; j ++ ) {
_vector.fromBufferAttribute( morphAttribute, j );
if ( morphTargetsRelative ) {
_offset.fromBufferAttribute( position, j );
_vector.add( _offset );
}
maxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( _vector ) );
}
}
}
this.boundingSphere.radius = Math.sqrt( maxRadiusSq );
if ( isNaN( this.boundingSphere.radius ) ) {
console.error( 'THREE.BufferGeometry.computeBoundingSphere(): Computed radius is NaN. The "position" attribute is likely to have NaN values.', this );
}
}
}
/**
* Calculates and adds a tangent attribute to this geometry.
*
* The computation is only supported for indexed geometries and if position, normal, and uv attributes
* are defined. When using a tangent space normal map, prefer the MikkTSpace algorithm provided by
* {@link BufferGeometryUtils#computeMikkTSpaceTangents} instead.
*/
computeTangents() {
const index = this.index;
const attributes = this.attributes;
// based on http://www.terathon.com/code/tangent.html
// (per vertex tangents)
if ( index === null ||
attributes.position === undefined ||
attributes.normal === undefined ||
attributes.uv === undefined ) {
console.error( 'THREE.BufferGeometry: .computeTangents() failed. Missing required attributes (index, position, normal or uv)' );
return;
}
const positionAttribute = attributes.position;
const normalAttribute = attributes.normal;
const uvAttribute = attributes.uv;
if ( this.hasAttribute( 'tangent' ) === false ) {
this.setAttribute( 'tangent', new BufferAttribute( new Float32Array( 4 * positionAttribute.count ), 4 ) );
}
const tangentAttribute = this.getAttribute( 'tangent' );
const tan1 = [], tan2 = [];
for ( let i = 0; i < positionAttribute.count; i ++ ) {
tan1[ i ] = new Vector3();
tan2[ i ] = new Vector3();
}
const vA = new Vector3(),
vB = new Vector3(),
vC = new Vector3(),
uvA = new Vector2(),
uvB = new Vector2(),
uvC = new Vector2(),
sdir = new Vector3(),
tdir = new Vector3();
function handleTriangle( a, b, c ) {
vA.fromBufferAttribute( positionAttribute, a );
vB.fromBufferAttribute( positionAttribute, b );
vC.fromBufferAttribute( positionAttribute, c );
uvA.fromBufferAttribute( uvAttribute, a );
uvB.fromBufferAttribute( uvAttribute, b );
uvC.fromBufferAttribute( uvAttribute, c );
vB.sub( vA );
vC.sub( vA );
uvB.sub( uvA );
uvC.sub( uvA );
const r = 1.0 / ( uvB.x * uvC.y - uvC.x * uvB.y );
// silently ignore degenerate uv triangles having coincident or colinear vertices
if ( ! isFinite( r ) ) return;
sdir.copy( vB ).multiplyScalar( uvC.y ).addScaledVector( vC, - uvB.y ).multiplyScalar( r );
tdir.copy( vC ).multiplyScalar( uvB.x ).addScaledVector( vB, - uvC.x ).multiplyScalar( r );
tan1[ a ].add( sdir );
tan1[ b ].add( sdir );
tan1[ c ].add( sdir );
tan2[ a ].add( tdir );
tan2[ b ].add( tdir );
tan2[ c ].add( tdir );
}
let groups = this.groups;
if ( groups.length === 0 ) {
groups = [ {
start: 0,
count: index.count
} ];
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleTriangle(
index.getX( j + 0 ),
index.getX( j + 1 ),
index.getX( j + 2 )
);
}
}
const tmp = new Vector3(), tmp2 = new Vector3();
const n = new Vector3(), n2 = new Vector3();
function handleVertex( v ) {
n.fromBufferAttribute( normalAttribute, v );
n2.copy( n );
const t = tan1[ v ];
// Gram-Schmidt orthogonalize
tmp.copy( t );
tmp.sub( n.multiplyScalar( n.dot( t ) ) ).normalize();
// Calculate handedness
tmp2.crossVectors( n2, t );
const test = tmp2.dot( tan2[ v ] );
const w = ( test < 0.0 ) ? - 1.0 : 1.0;
tangentAttribute.setXYZW( v, tmp.x, tmp.y, tmp.z, w );
}
for ( let i = 0, il = groups.length; i < il; ++ i ) {
const group = groups[ i ];
const start = group.start;
const count = group.count;
for ( let j = start, jl = start + count; j < jl; j += 3 ) {
handleVertex( index.getX( j + 0 ) );
handleVertex( index.getX( j + 1 ) );
handleVertex( index.getX( j + 2 ) );
}
}
}
/**
* Computes vertex normals for the given vertex data. For indexed geometries, the method sets
* each vertex normal to be the average of the face normals of the faces that share that vertex.
* For non-indexed geometries, vertices are not shared, and the method sets each vertex normal
* to be the same as the face normal.
*/
computeVertexNormals() {
const index = this.index;
const positionAttribute = this.getAttribute( 'position' );
if ( positionAttribute !== undefined ) {
let normalAttribute = this.getAttribute( 'normal' );
if ( normalAttribute === undefined ) {
normalAttribute = new BufferAttribute( new Float32Array( positionAttribute.count * 3 ), 3 );
this.setAttribute( 'normal', normalAttribute );
} else {
// reset existing normals to zero
for ( let i = 0, il = normalAttribute.count; i < il; i ++ ) {
normalAttribute.setXYZ( i, 0, 0, 0 );
}
}