-
-
Notifications
You must be signed in to change notification settings - Fork 35.5k
/
Copy pathPhysicalLightingModel.js
632 lines (437 loc) · 20.8 KB
/
PhysicalLightingModel.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import BRDF_Lambert from './BSDF/BRDF_Lambert.js';
import BRDF_GGX from './BSDF/BRDF_GGX.js';
import DFGApprox from './BSDF/DFGApprox.js';
import EnvironmentBRDF from './BSDF/EnvironmentBRDF.js';
import F_Schlick from './BSDF/F_Schlick.js';
import Schlick_to_F0 from './BSDF/Schlick_to_F0.js';
import BRDF_Sheen from './BSDF/BRDF_Sheen.js';
import { LTC_Evaluate, LTC_Uv } from './BSDF/LTC.js';
import LightingModel from '../core/LightingModel.js';
import { diffuseColor, specularColor, specularF90, roughness, clearcoat, clearcoatRoughness, sheen, sheenRoughness, iridescence, iridescenceIOR, iridescenceThickness, ior, thickness, transmission, attenuationDistance, attenuationColor, dispersion } from '../core/PropertyNode.js';
import { transformedNormalView, transformedClearcoatNormalView, transformedNormalWorld } from '../accessors/NormalNode.js';
import { positionViewDirection, positionView, positionWorld } from '../accessors/PositionNode.js';
import { tslFn, float, vec2, vec3, vec4, mat3, If } from '../shadernode/ShaderNode.js';
import { cond } from '../math/CondNode.js';
import { mix, normalize, refract, length, clamp, log2, log, exp, smoothstep } from '../math/MathNode.js';
import { div } from '../math/OperatorNode.js';
import { cameraPosition, cameraProjectionMatrix, cameraViewMatrix } from '../accessors/CameraNode.js';
import { modelWorldMatrix } from '../accessors/ModelNode.js';
import { viewportResolution } from '../display/ViewportNode.js';
import { viewportMipTexture } from '../display/ViewportTextureNode.js';
import { loop } from '../utils/LoopNode.js';
//
// Transmission
//
const getVolumeTransmissionRay = tslFn( ( [ n, v, thickness, ior, modelMatrix ] ) => {
// Direction of refracted light.
const refractionVector = vec3( refract( v.negate(), normalize( n ), div( 1.0, ior ) ) );
// Compute rotation-independant scaling of the model matrix.
const modelScale = vec3(
length( modelMatrix[ 0 ].xyz ),
length( modelMatrix[ 1 ].xyz ),
length( modelMatrix[ 2 ].xyz )
);
// The thickness is specified in local space.
return normalize( refractionVector ).mul( thickness.mul( modelScale ) );
} ).setLayout( {
name: 'getVolumeTransmissionRay',
type: 'vec3',
inputs: [
{ name: 'n', type: 'vec3' },
{ name: 'v', type: 'vec3' },
{ name: 'thickness', type: 'float' },
{ name: 'ior', type: 'float' },
{ name: 'modelMatrix', type: 'mat4' }
]
} );
const applyIorToRoughness = tslFn( ( [ roughness, ior ] ) => {
// Scale roughness with IOR so that an IOR of 1.0 results in no microfacet refraction and
// an IOR of 1.5 results in the default amount of microfacet refraction.
return roughness.mul( clamp( ior.mul( 2.0 ).sub( 2.0 ), 0.0, 1.0 ) );
} ).setLayout( {
name: 'applyIorToRoughness',
type: 'float',
inputs: [
{ name: 'roughness', type: 'float' },
{ name: 'ior', type: 'float' }
]
} );
const singleViewportMipTexture = viewportMipTexture();
const getTransmissionSample = tslFn( ( [ fragCoord, roughness, ior ] ) => {
const transmissionSample = singleViewportMipTexture.uv( fragCoord );
//const transmissionSample = viewportMipTexture( fragCoord );
const lod = log2( float( viewportResolution.x ) ).mul( applyIorToRoughness( roughness, ior ) );
return transmissionSample.bicubic( lod );
} );
const volumeAttenuation = tslFn( ( [ transmissionDistance, attenuationColor, attenuationDistance ] ) => {
If( attenuationDistance.notEqual( 0 ), () => {
// Compute light attenuation using Beer's law.
const attenuationCoefficient = log( attenuationColor ).negate().div( attenuationDistance );
const transmittance = exp( attenuationCoefficient.negate().mul( transmissionDistance ) );
return transmittance;
} );
// Attenuation distance is +∞, i.e. the transmitted color is not attenuated at all.
return vec3( 1.0 );
} ).setLayout( {
name: 'volumeAttenuation',
type: 'vec3',
inputs: [
{ name: 'transmissionDistance', type: 'float' },
{ name: 'attenuationColor', type: 'vec3' },
{ name: 'attenuationDistance', type: 'float' }
]
} );
const getIBLVolumeRefraction = tslFn( ( [ n, v, roughness, diffuseColor, specularColor, specularF90, position, modelMatrix, viewMatrix, projMatrix, ior, thickness, attenuationColor, attenuationDistance, dispersion ] ) => {
let transmittedLight, transmittance;
if ( dispersion ) {
transmittedLight = vec4().toVar();
transmittance = vec3().toVar();
const halfSpread = ior.sub( 1.0 ).mul( dispersion.mul( 0.025 ) );
const iors = vec3( ior.sub( halfSpread ), ior, ior.add( halfSpread ) );
loop( { start: 0, end: 3 }, ( { i } ) => {
const ior = iors.element( i );
const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
const refractedRayExit = position.add( transmissionRay );
// Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) );
const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar();
refractionCoords.addAssign( 1.0 );
refractionCoords.divAssign( 2.0 );
refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu
// Sample framebuffer to get pixel the refracted ray hits.
const transmissionSample = getTransmissionSample( refractionCoords, roughness, ior );
transmittedLight.element( i ).assign( transmissionSample.element( i ) );
transmittedLight.a.addAssign( transmissionSample.a );
transmittance.element( i ).assign( diffuseColor.element( i ).mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ).element( i ) ) );
} );
transmittedLight.a.divAssign( 3.0 );
} else {
const transmissionRay = getVolumeTransmissionRay( n, v, thickness, ior, modelMatrix );
const refractedRayExit = position.add( transmissionRay );
// Project refracted vector on the framebuffer, while mapping to normalized device coordinates.
const ndcPos = projMatrix.mul( viewMatrix.mul( vec4( refractedRayExit, 1.0 ) ) );
const refractionCoords = vec2( ndcPos.xy.div( ndcPos.w ) ).toVar();
refractionCoords.addAssign( 1.0 );
refractionCoords.divAssign( 2.0 );
refractionCoords.assign( vec2( refractionCoords.x, refractionCoords.y.oneMinus() ) ); // webgpu
// Sample framebuffer to get pixel the refracted ray hits.
transmittedLight = getTransmissionSample( refractionCoords, roughness, ior );
transmittance = diffuseColor.mul( volumeAttenuation( length( transmissionRay ), attenuationColor, attenuationDistance ) );
}
const attenuatedColor = transmittance.rgb.mul( transmittedLight.rgb );
const dotNV = n.dot( v ).clamp();
// Get the specular component.
const F = vec3( EnvironmentBRDF( { // n, v, specularColor, specularF90, roughness
dotNV,
specularColor,
specularF90,
roughness
} ) );
// As less light is transmitted, the opacity should be increased. This simple approximation does a decent job
// of modulating a CSS background, and has no effect when the buffer is opaque, due to a solid object or clear color.
const transmittanceFactor = transmittance.r.add( transmittance.g, transmittance.b ).div( 3.0 );
return vec4( F.oneMinus().mul( attenuatedColor ), transmittedLight.a.oneMinus().mul( transmittanceFactor ).oneMinus() );
} );
//
// Iridescence
//
// XYZ to linear-sRGB color space
const XYZ_TO_REC709 = mat3(
3.2404542, - 0.9692660, 0.0556434,
- 1.5371385, 1.8760108, - 0.2040259,
- 0.4985314, 0.0415560, 1.0572252
);
// Assume air interface for top
// Note: We don't handle the case fresnel0 == 1
const Fresnel0ToIor = ( fresnel0 ) => {
const sqrtF0 = fresnel0.sqrt();
return vec3( 1.0 ).add( sqrtF0 ).div( vec3( 1.0 ).sub( sqrtF0 ) );
};
// ior is a value between 1.0 and 3.0. 1.0 is air interface
const IorToFresnel0 = ( transmittedIor, incidentIor ) => {
return transmittedIor.sub( incidentIor ).div( transmittedIor.add( incidentIor ) ).pow2();
};
// Fresnel equations for dielectric/dielectric interfaces.
// Ref: https://belcour.github.io/blog/research/2017/05/01/brdf-thin-film.html
// Evaluation XYZ sensitivity curves in Fourier space
const evalSensitivity = ( OPD, shift ) => {
const phase = OPD.mul( 2.0 * Math.PI * 1.0e-9 );
const val = vec3( 5.4856e-13, 4.4201e-13, 5.2481e-13 );
const pos = vec3( 1.6810e+06, 1.7953e+06, 2.2084e+06 );
const VAR = vec3( 4.3278e+09, 9.3046e+09, 6.6121e+09 );
const x = float( 9.7470e-14 * Math.sqrt( 2.0 * Math.PI * 4.5282e+09 ) ).mul( phase.mul( 2.2399e+06 ).add( shift.x ).cos() ).mul( phase.pow2().mul( - 4.5282e+09 ).exp() );
let xyz = val.mul( VAR.mul( 2.0 * Math.PI ).sqrt() ).mul( pos.mul( phase ).add( shift ).cos() ).mul( phase.pow2().negate().mul( VAR ).exp() );
xyz = vec3( xyz.x.add( x ), xyz.y, xyz.z ).div( 1.0685e-7 );
const rgb = XYZ_TO_REC709.mul( xyz );
return rgb;
};
const evalIridescence = tslFn( ( { outsideIOR, eta2, cosTheta1, thinFilmThickness, baseF0 } ) => {
// Force iridescenceIOR -> outsideIOR when thinFilmThickness -> 0.0
const iridescenceIOR = mix( outsideIOR, eta2, smoothstep( 0.0, 0.03, thinFilmThickness ) );
// Evaluate the cosTheta on the base layer (Snell law)
const sinTheta2Sq = outsideIOR.div( iridescenceIOR ).pow2().mul( float( 1 ).sub( cosTheta1.pow2() ) );
// Handle TIR:
const cosTheta2Sq = float( 1 ).sub( sinTheta2Sq );
/*if ( cosTheta2Sq < 0.0 ) {
return vec3( 1.0 );
}*/
const cosTheta2 = cosTheta2Sq.sqrt();
// First interface
const R0 = IorToFresnel0( iridescenceIOR, outsideIOR );
const R12 = F_Schlick( { f0: R0, f90: 1.0, dotVH: cosTheta1 } );
//const R21 = R12;
const T121 = R12.oneMinus();
const phi12 = iridescenceIOR.lessThan( outsideIOR ).cond( Math.PI, 0.0 );
const phi21 = float( Math.PI ).sub( phi12 );
// Second interface
const baseIOR = Fresnel0ToIor( baseF0.clamp( 0.0, 0.9999 ) ); // guard against 1.0
const R1 = IorToFresnel0( baseIOR, iridescenceIOR.toVec3() );
const R23 = F_Schlick( { f0: R1, f90: 1.0, dotVH: cosTheta2 } );
const phi23 = vec3(
baseIOR.x.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 ),
baseIOR.y.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 ),
baseIOR.z.lessThan( iridescenceIOR ).cond( Math.PI, 0.0 )
);
// Phase shift
const OPD = iridescenceIOR.mul( thinFilmThickness, cosTheta2, 2.0 );
const phi = vec3( phi21 ).add( phi23 );
// Compound terms
const R123 = R12.mul( R23 ).clamp( 1e-5, 0.9999 );
const r123 = R123.sqrt();
const Rs = T121.pow2().mul( R23 ).div( vec3( 1.0 ).sub( R123 ) );
// Reflectance term for m = 0 (DC term amplitude)
const C0 = R12.add( Rs );
let I = C0;
// Reflectance term for m > 0 (pairs of diracs)
let Cm = Rs.sub( T121 );
for ( let m = 1; m <= 2; ++ m ) {
Cm = Cm.mul( r123 );
const Sm = evalSensitivity( float( m ).mul( OPD ), float( m ).mul( phi ) ).mul( 2.0 );
I = I.add( Cm.mul( Sm ) );
}
// Since out of gamut colors might be produced, negative color values are clamped to 0.
return I.max( vec3( 0.0 ) );
} ).setLayout( {
name: 'evalIridescence',
type: 'vec3',
inputs: [
{ name: 'outsideIOR', type: 'float' },
{ name: 'eta2', type: 'float' },
{ name: 'cosTheta1', type: 'float' },
{ name: 'thinFilmThickness', type: 'float' },
{ name: 'baseF0', type: 'vec3' }
]
} );
//
// Sheen
//
// This is a curve-fit approxmation to the "Charlie sheen" BRDF integrated over the hemisphere from
// Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF". The analysis can be found
// in the Sheen section of https://drive.google.com/file/d/1T0D1VSyR4AllqIJTQAraEIzjlb5h4FKH/view?usp=sharing
const IBLSheenBRDF = tslFn( ( { normal, viewDir, roughness } ) => {
const dotNV = normal.dot( viewDir ).saturate();
const r2 = roughness.pow2();
const a = cond(
roughness.lessThan( 0.25 ),
float( - 339.2 ).mul( r2 ).add( float( 161.4 ).mul( roughness ) ).sub( 25.9 ),
float( - 8.48 ).mul( r2 ).add( float( 14.3 ).mul( roughness ) ).sub( 9.95 )
);
const b = cond(
roughness.lessThan( 0.25 ),
float( 44.0 ).mul( r2 ).sub( float( 23.7 ).mul( roughness ) ).add( 3.26 ),
float( 1.97 ).mul( r2 ).sub( float( 3.27 ).mul( roughness ) ).add( 0.72 )
);
const DG = cond( roughness.lessThan( 0.25 ), 0.0, float( 0.1 ).mul( roughness ).sub( 0.025 ) ).add( a.mul( dotNV ).add( b ).exp() );
return DG.mul( 1.0 / Math.PI ).saturate();
} );
const clearcoatF0 = vec3( 0.04 );
const clearcoatF90 = float( 1 );
//
class PhysicalLightingModel extends LightingModel {
constructor( clearcoat = false, sheen = false, iridescence = false, anisotropy = false, transmission = false, dispersion = false ) {
super();
this.clearcoat = clearcoat;
this.sheen = sheen;
this.iridescence = iridescence;
this.anisotropy = anisotropy;
this.transmission = transmission;
this.dispersion = dispersion;
this.clearcoatRadiance = null;
this.clearcoatSpecularDirect = null;
this.clearcoatSpecularIndirect = null;
this.sheenSpecularDirect = null;
this.sheenSpecularIndirect = null;
this.iridescenceFresnel = null;
this.iridescenceF0 = null;
}
start( context ) {
if ( this.clearcoat === true ) {
this.clearcoatRadiance = vec3().temp( 'clearcoatRadiance' );
this.clearcoatSpecularDirect = vec3().temp( 'clearcoatSpecularDirect' );
this.clearcoatSpecularIndirect = vec3().temp( 'clearcoatSpecularIndirect' );
}
if ( this.sheen === true ) {
this.sheenSpecularDirect = vec3().temp( 'sheenSpecularDirect' );
this.sheenSpecularIndirect = vec3().temp( 'sheenSpecularIndirect' );
}
if ( this.iridescence === true ) {
const dotNVi = transformedNormalView.dot( positionViewDirection ).clamp();
this.iridescenceFresnel = evalIridescence( {
outsideIOR: float( 1.0 ),
eta2: iridescenceIOR,
cosTheta1: dotNVi,
thinFilmThickness: iridescenceThickness,
baseF0: specularColor
} );
this.iridescenceF0 = Schlick_to_F0( { f: this.iridescenceFresnel, f90: 1.0, dotVH: dotNVi } );
}
if ( this.transmission === true ) {
const position = positionWorld;
const v = cameraPosition.sub( positionWorld ).normalize(); // TODO: Create Node for this, same issue in MaterialX
const n = transformedNormalWorld;
context.backdrop = getIBLVolumeRefraction(
n,
v,
roughness,
diffuseColor,
specularColor,
specularF90, // specularF90
position, // positionWorld
modelWorldMatrix, // modelMatrix
cameraViewMatrix, // viewMatrix
cameraProjectionMatrix, // projMatrix
ior,
thickness,
attenuationColor,
attenuationDistance,
this.dispersion ? dispersion : null
);
context.backdropAlpha = transmission;
diffuseColor.a.mulAssign( mix( 1, context.backdrop.a, transmission ) );
}
}
// Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting"
// Approximates multiscattering in order to preserve energy.
// http://www.jcgt.org/published/0008/01/03/
computeMultiscattering( singleScatter, multiScatter, specularF90 ) {
const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV
const fab = DFGApprox( { roughness, dotNV } );
const Fr = this.iridescenceF0 ? iridescence.mix( specularColor, this.iridescenceF0 ) : specularColor;
const FssEss = Fr.mul( fab.x ).add( specularF90.mul( fab.y ) );
const Ess = fab.x.add( fab.y );
const Ems = Ess.oneMinus();
const Favg = specularColor.add( specularColor.oneMinus().mul( 0.047619 ) ); // 1/21
const Fms = FssEss.mul( Favg ).div( Ems.mul( Favg ).oneMinus() );
singleScatter.addAssign( FssEss );
multiScatter.addAssign( Fms.mul( Ems ) );
}
direct( { lightDirection, lightColor, reflectedLight } ) {
const dotNL = transformedNormalView.dot( lightDirection ).clamp();
const irradiance = dotNL.mul( lightColor );
if ( this.sheen === true ) {
this.sheenSpecularDirect.addAssign( irradiance.mul( BRDF_Sheen( { lightDirection } ) ) );
}
if ( this.clearcoat === true ) {
const dotNLcc = transformedClearcoatNormalView.dot( lightDirection ).clamp();
const ccIrradiance = dotNLcc.mul( lightColor );
this.clearcoatSpecularDirect.addAssign( ccIrradiance.mul( BRDF_GGX( { lightDirection, f0: clearcoatF0, f90: clearcoatF90, roughness: clearcoatRoughness, normalView: transformedClearcoatNormalView } ) ) );
}
reflectedLight.directDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor: diffuseColor.rgb } ) ) );
reflectedLight.directSpecular.addAssign( irradiance.mul( BRDF_GGX( { lightDirection, f0: specularColor, f90: 1, roughness, iridescence: this.iridescence, f: this.iridescenceFresnel, USE_IRIDESCENCE: this.iridescence, USE_ANISOTROPY: this.anisotropy } ) ) );
}
directRectArea( { lightColor, lightPosition, halfWidth, halfHeight, reflectedLight, ltc_1, ltc_2 } ) {
const p0 = lightPosition.add( halfWidth ).sub( halfHeight ); // counterclockwise; light shines in local neg z direction
const p1 = lightPosition.sub( halfWidth ).sub( halfHeight );
const p2 = lightPosition.sub( halfWidth ).add( halfHeight );
const p3 = lightPosition.add( halfWidth ).add( halfHeight );
const N = transformedNormalView;
const V = positionViewDirection;
const P = positionView.toVar();
const uv = LTC_Uv( { N, V, roughness } );
const t1 = ltc_1.uv( uv ).toVar();
const t2 = ltc_2.uv( uv ).toVar();
const mInv = mat3(
vec3( t1.x, 0, t1.y ),
vec3( 0, 1, 0 ),
vec3( t1.z, 0, t1.w )
).toVar();
// LTC Fresnel Approximation by Stephen Hill
// http://blog.selfshadow.com/publications/s2016-advances/s2016_ltc_fresnel.pdf
const fresnel = specularColor.mul( t2.x ).add( specularColor.oneMinus().mul( t2.y ) ).toVar();
reflectedLight.directSpecular.addAssign( lightColor.mul( fresnel ).mul( LTC_Evaluate( { N, V, P, mInv, p0, p1, p2, p3 } ) ) );
reflectedLight.directDiffuse.addAssign( lightColor.mul( diffuseColor ).mul( LTC_Evaluate( { N, V, P, mInv: mat3( 1, 0, 0, 0, 1, 0, 0, 0, 1 ), p0, p1, p2, p3 } ) ) );
}
indirect( context, stack, builder ) {
this.indirectDiffuse( context, stack, builder );
this.indirectSpecular( context, stack, builder );
this.ambientOcclusion( context, stack, builder );
}
indirectDiffuse( { irradiance, reflectedLight } ) {
reflectedLight.indirectDiffuse.addAssign( irradiance.mul( BRDF_Lambert( { diffuseColor } ) ) );
}
indirectSpecular( { radiance, iblIrradiance, reflectedLight } ) {
if ( this.sheen === true ) {
this.sheenSpecularIndirect.addAssign( iblIrradiance.mul(
sheen,
IBLSheenBRDF( {
normal: transformedNormalView,
viewDir: positionViewDirection,
roughness: sheenRoughness
} )
) );
}
if ( this.clearcoat === true ) {
const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp();
const clearcoatEnv = EnvironmentBRDF( {
dotNV: dotNVcc,
specularColor: clearcoatF0,
specularF90: clearcoatF90,
roughness: clearcoatRoughness
} );
this.clearcoatSpecularIndirect.addAssign( this.clearcoatRadiance.mul( clearcoatEnv ) );
}
// Both indirect specular and indirect diffuse light accumulate here
const singleScattering = vec3().temp( 'singleScattering' );
const multiScattering = vec3().temp( 'multiScattering' );
const cosineWeightedIrradiance = iblIrradiance.mul( 1 / Math.PI );
this.computeMultiscattering( singleScattering, multiScattering, specularF90 );
const totalScattering = singleScattering.add( multiScattering );
const diffuse = diffuseColor.mul( totalScattering.r.max( totalScattering.g ).max( totalScattering.b ).oneMinus() );
reflectedLight.indirectSpecular.addAssign( radiance.mul( singleScattering ) );
reflectedLight.indirectSpecular.addAssign( multiScattering.mul( cosineWeightedIrradiance ) );
reflectedLight.indirectDiffuse.addAssign( diffuse.mul( cosineWeightedIrradiance ) );
}
ambientOcclusion( { ambientOcclusion, reflectedLight } ) {
const dotNV = transformedNormalView.dot( positionViewDirection ).clamp(); // @ TODO: Move to core dotNV
const aoNV = dotNV.add( ambientOcclusion );
const aoExp = roughness.mul( - 16.0 ).oneMinus().negate().exp2();
const aoNode = ambientOcclusion.sub( aoNV.pow( aoExp ).oneMinus() ).clamp();
if ( this.clearcoat === true ) {
this.clearcoatSpecularIndirect.mulAssign( ambientOcclusion );
}
if ( this.sheen === true ) {
this.sheenSpecularIndirect.mulAssign( ambientOcclusion );
}
reflectedLight.indirectDiffuse.mulAssign( ambientOcclusion );
reflectedLight.indirectSpecular.mulAssign( aoNode );
}
finish( context ) {
const { outgoingLight } = context;
if ( this.clearcoat === true ) {
const dotNVcc = transformedClearcoatNormalView.dot( positionViewDirection ).clamp();
const Fcc = F_Schlick( {
dotVH: dotNVcc,
f0: clearcoatF0,
f90: clearcoatF90
} );
const clearcoatLight = outgoingLight.mul( clearcoat.mul( Fcc ).oneMinus() ).add( this.clearcoatSpecularDirect.add( this.clearcoatSpecularIndirect ).mul( clearcoat ) );
outgoingLight.assign( clearcoatLight );
}
if ( this.sheen === true ) {
const sheenEnergyComp = sheen.r.max( sheen.g ).max( sheen.b ).mul( 0.157 ).oneMinus();
const sheenLight = outgoingLight.mul( sheenEnergyComp ).add( this.sheenSpecularDirect, this.sheenSpecularIndirect );
outgoingLight.assign( sheenLight );
}
}
}
export default PhysicalLightingModel;