-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathutils.py
246 lines (201 loc) · 7.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import time
import math
import torch
import random
import librosa
import librosa.display
import numpy as np
from torch.utils import data
import matplotlib
import matplotlib.pyplot as plt
import glob
import pescador
import torch.nn as nn
from torch.autograd import Variable
from params import *
#############################
# File Utils
#############################
def get_recursive_files(folderPath, ext):
results = os.listdir(folderPath)
outFiles = []
for file in results:
if os.path.isdir(os.path.join(folderPath, file)):
outFiles += get_recursive_files(os.path.join(folderPath, file), ext)
elif file.endswith(ext):
outFiles.append(os.path.join(folderPath, file))
return outFiles
def make_path(output_path):
if not os.path.isdir(output_path):
os.makedirs(output_path)
return output_path
#############################
# Plotting utils
#############################
def visualize_audio(audio_tensor, is_monphonic=False):
# takes a batch ,n channels , window length and plots the spectogram
input_audios = audio_tensor.detach().cpu().numpy()
plt.figure(figsize=(18, 50))
for i, audio in enumerate(input_audios):
plt.subplot(10, 2, i + 1)
if is_monphonic:
plt.title("Monophonic %i" % (i + 1))
librosa.display.waveplot(audio[0], sr=sampling_rate)
else:
D = librosa.amplitude_to_db(np.abs(librosa.stft(audio[0])), ref=np.max)
librosa.display.specshow(D, y_axis="linear")
plt.colorbar(format="%+2.0f dB")
plt.title("Linear-frequency power spectrogram %i" % (i + 1))
if not (os.path.isdir("visualization")):
os.makedirs("visualization")
plt.savefig("visualization/interpolation.png")
def visualize_loss(loss_1, loss_2, first_legend, second_legend, y_label):
plt.figure(figsize=(10, 5))
plt.title("{} and {} Loss During Training".format(first_legend, second_legend))
plt.plot(loss_1, label=first_legend)
plt.plot(loss_2, label=second_legend)
plt.xlabel("iterations")
plt.ylabel(y_label)
plt.grid(True)
plt.tight_layout()
plt.legend()
plt.show()
if not (os.path.isdir("visualization")):
os.makedirs("visualization")
plt.savefig("visualization/loss.png")
def latent_space_interpolation(model, n_samples=10):
z_test = sample_noise(2)
with torch.no_grad():
interpolates = []
for alpha in np.linspace(0, 1, n_samples):
interpolate_vec = alpha * z_test[0] + ((1 - alpha) * z_test[1])
interpolates.append(interpolate_vec)
interpolates = torch.stack(interpolates)
generated_audio = model(interpolates)
visualize_audio(generated_audio, True)
#############################
# Wav files utils
#############################
# Fast loading used with wav files only of 8 bits
def load_wav(wav_file_path):
try:
audio_data, _ = librosa.load(wav_file_path, sr=sampling_rate)
if normalize_audio:
# Clip magnitude
max_mag = np.max(np.abs(audio_data))
if max_mag > 1:
audio_data /= max_mag
except Exception as e:
LOGGER.error("Could not load {}: {}".format(wav_file_path, str(e)))
raise e
audio_len = len(audio_data)
if audio_len < window_length:
pad_length = window_length - audio_len
left_pad = pad_length // 2
right_pad = pad_length - left_pad
audio_data = np.pad(audio_data, (left_pad, right_pad), mode="constant")
return audio_data.astype("float32")
def sample_audio(audio_data, start_idx=None, end_idx=None):
audio_len = len(audio_data)
if audio_len == window_length:
# If we only have a single 1*window_length audio, just yield.
sample = audio_data
else:
# Sample a random window from the audio
if start_idx is None or end_idx is None:
start_idx = np.random.randint(0, (audio_len - window_length) // 2)
end_idx = start_idx + window_length
sample = audio_data[start_idx:end_idx]
sample = sample.astype("float32")
assert not np.any(np.isnan(sample))
return sample, start_idx, end_idx
def sample_buffer(buffer_data, start_idx=None, end_idx=None):
audio_len = len(buffer_data) // 4
if audio_len == window_length:
# If we only have a single 1*window_length audio, just yield.
sample = buffer_data
else:
# Sample a random window from the audio
if start_idx is None or end_idx is None:
start_idx = np.random.randint(0, (audio_len - window_length) // 2)
end_idx = start_idx + window_length
sample = buffer_data[start_idx * 4 : end_idx * 4]
return sample, start_idx, end_idx
def wav_generator(file_path):
audio_data = load_wav(file_path)
while True:
sample, _, _ = sample_audio(audio_data)
yield {"single": sample}
def create_stream_reader(single_signal_file_list):
data_streams = []
for audio_path in single_signal_file_list:
stream = pescador.Streamer(wav_generator, audio_path)
data_streams.append(stream)
mux = pescador.ShuffledMux(data_streams)
batch_gen = pescador.buffer_stream(mux, batch_size)
return batch_gen
def save_samples(epoch_samples, epoch):
"""
Save output samples.
"""
sample_dir = make_path(os.path.join(output_dir, str(epoch)))
for idx, sample in enumerate(epoch_samples):
output_path = os.path.join(sample_dir, "{}.wav".format(idx + 1))
sample = sample[0]
librosa.output.write_wav(output_path, sample, sampling_rate)
#############################
# Sampling from model
#############################
def sample_noise(size):
z = torch.FloatTensor(size, noise_latent_dim).to(device)
z.data.normal_() # generating latent space based on normal distribution
return z
#############################
# Model Utils
#############################
def update_optimizer_lr(optimizer, lr, decay):
for param_group in optimizer.param_groups:
param_group["lr"] = lr * decay
def gradients_status(model, flag):
for p in model.parameters():
p.requires_grad = flag
def weights_init(m):
if isinstance(m, nn.Conv1d):
m.weight.data.normal_(0.0, 0.02)
if m.bias is not None:
m.bias.data.fill_(0)
m.bias.data.fill_(0)
elif isinstance(m, nn.Linear):
m.bias.data.fill_(0)
#############################
# Creating Data Loader and Sampler
#############################
class WavDataLoader:
def __init__(self, folder_path, audio_extension="wav"):
self.signal_paths = get_recursive_files(folder_path, audio_extension)
self.data_iter = None
self.initialize_iterator()
def initialize_iterator(self):
data_iter = create_stream_reader(self.signal_paths)
self.data_iter = iter(data_iter)
def __len__(self):
return len(self.signal_paths)
def numpy_to_tensor(self, numpy_array):
numpy_array = numpy_array[:, np.newaxis, :]
return torch.Tensor(numpy_array).to(device)
def __iter__(self):
return self
def __next__(self):
x = next(self.data_iter)
return self.numpy_to_tensor(x["single"])
if __name__ == "__main__":
# For debugging purposes
import time
start = time.time()
print(time.time() - start)
train_loader = WavDataLoader(os.path.join("piano", "train"), "wav")
start = time.time()
for i in range(7):
x = next(train_loader)
print(time.time() - start)