from blocks.bricks import ( Initializable, Linear, Random) from blocks.bricks.base import lazy, application from blocks.bricks.lookup import LookupTable from blocks.bricks.parallel import Fork from blocks.bricks.recurrent import GatedRecurrent, Bidirectional from blocks.roles import add_role, INITIAL_STATE, PARAMETER from blocks.utils import shared_floatx_zeros, dict_union from blocks.bricks import Brick import numpy import theano from theano import tensor, function import sys sys.path.insert(1, '.') sys.path.insert(1, './sampleRNN') from models.conditional import three_tier floatX = theano.config.floatX def _simple_norm(x, eps=1e-5): output = (x - tensor.shape_padright(x.mean(-1))) / \ (eps + tensor.shape_padright(x.std(-1))) return output def _apply_norm(x, layer_norm=True): if layer_norm: return _simple_norm(x) else: return x def logsumexp(x, axis=None): x_max = tensor.max(x, axis=axis, keepdims=True) z = tensor.log( tensor.sum(tensor.exp(x - x_max), axis=axis, keepdims=True)) + x_max return z.sum(axis=axis) def predict(probs, axis=-1): return tensor.argmax(probs, axis=axis) # https://gist.github.com/benanne/2300591 def one_hot(t, r=None): """Compute one hot encoding. given a tensor t of dimension d with integer values from range(r), return a new tensor of dimension d + 1 with values 0/1, where the last dimension gives a one-hot representation of the values in t. if r is not given, r is set to max(t) + 1 """ if r is None: r = tensor.max(t) + 1 ranges = tensor.shape_padleft(tensor.arange(r), t.ndim) return tensor.eq(ranges, tensor.shape_padright(t, 1)) def cost_gmm(y, mu, sig, weight): """Gaussian mixture model negative log-likelihood. Computes the cost. """ n_dim = y.ndim shape_y = y.shape k = weight.shape[-1] y = y.reshape((-1, shape_y[-1])) y = tensor.shape_padright(y) mu = mu.reshape((-1, shape_y[-1], k)) sig = sig.reshape((-1, shape_y[-1], k)) weight = weight.reshape((-1, k)) diff = tensor.sqr(y - mu) inner = -0.5 * tensor.sum( diff / sig**2 + 2 * tensor.log(sig) + tensor.log(2 * numpy.pi), axis=-2) nll = -logsumexp(tensor.log(weight) + inner, axis=-1) return nll.reshape(shape_y[:-1], ndim=n_dim - 1) def sample_gmm(mu, sigma, weight, theano_rng): k = weight.shape[-1] dim = mu.shape[-1] / k shape_result = weight.shape shape_result = tensor.set_subtensor(shape_result[-1], dim) ndim_result = weight.ndim mu = mu.reshape((-1, dim, k)) sigma = sigma.reshape((-1, dim, k)) weight = weight.reshape((-1, k)) sample_weight = theano_rng.multinomial(pvals=weight, dtype=weight.dtype) idx = predict(sample_weight, axis=-1) mu = mu[tensor.arange(mu.shape[0]), :, idx] sigma = sigma[tensor.arange(sigma.shape[0]), :, idx] epsilon = theano_rng.normal( size=mu.shape, avg=0., std=1., dtype=mu.dtype) result = mu + sigma * epsilon return result.reshape(shape_result, ndim=ndim_result) class SampleRnn(Brick): def __init__(self, **kwargs): super(SampleRnn, self).__init__(**kwargs) _, _, self.parameters, _, _, _, _ = three_tier.compute_cost(*self.raw_inputs()) for p in self.parameters: add_role(p, PARAMETER) self.N_RNN = three_tier.N_RNN def raw_inputs(self): seq = tensor.imatrix('rseq') feat = tensor.tensor3('rfeat') h0_ = tensor.tensor3('rh0') big_h0_ = tensor.tensor3('rbigh0') res_ = tensor.scalar('rscalar') mask_ = tensor.matrix('rmask') return seq, feat, h0_, big_h0_, res_, mask_ @application def apply(self, sequences, features, h0, big_h0, reset, mask): cost, ip_cost, all_params, ip_params, other_params, new_h0, new_big_h0 = \ three_tier.compute_cost(sequences, features, h0, big_h0, reset, mask) return cost, ip_cost, all_params, ip_params, other_params, new_h0, new_big_h0 def initial_states(self, batch_size): big_h0_shape = (batch_size, three_tier.N_RNN, three_tier.H0_MULT*three_tier.BIG_DIM) last_big_h0 = shared_floatx_zeros(big_h0_shape) h0_shape = (batch_size, three_tier.N_RNN, three_tier.H0_MULT*three_tier.DIM) last_h0 = shared_floatx_zeros(h0_shape) return last_h0, last_big_h0 def sample_raw(self, test_feats, features_length, tag, path_to_save): seq, feat, h0_, big_h0_, res_, mask_ = self.raw_inputs() big_frame_gen, frame_gen, sample_gen = three_tier.getting_generation_functions( seq, h0_, big_h0_, res_, feat) three_tier.generate_and_save_samples( tag, path_to_save=path_to_save, features=test_feats, features_length=features_length, noise_level=0., big_frame_level_generate_fn=big_frame_gen, frame_level_generate_fn=frame_gen, sample_level_generate_fn=sample_gen, npy_address=None) class RecurrentWithFork(Initializable): # Obtained from Dima's code. @rizar # https://github.com/rizar/attention-lvcsr/blob/master/lvsr/bricks/__init__.py @lazy(allocation=['input_dim']) def __init__(self, recurrent, input_dim, **kwargs): super(RecurrentWithFork, self).__init__(**kwargs) self.recurrent = recurrent self.input_dim = input_dim self.fork = Fork( [name for name in self.recurrent.sequences if name != 'mask'], prototype=Linear()) self.children = [recurrent.brick, self.fork] def _push_allocation_config(self): self.fork.input_dim = self.input_dim self.fork.output_dims = [self.recurrent.brick.get_dim(name) for name in self.fork.output_names] @application(inputs=['input_', 'mask']) def apply(self, input_, mask=None, **kwargs): return self.recurrent( mask=mask, **dict_union(self.fork.apply(input_, as_dict=True), kwargs)) @apply.property('outputs') def apply_outputs(self): return self.recurrent.states class Encoder(Initializable): def __init__( self, encoder_type, num_characters, input_dim, encoder_dim, **kwargs): assert encoder_type in [None, 'bidirectional'] self.encoder_type = encoder_type super(Encoder, self).__init__(**kwargs) self.children = [] if encoder_type in ['lookup', 'bidirectional']: self.embed_label = LookupTable( num_characters, input_dim, name='embed_label') self.children += [ self.embed_label] else: # If there is no encoder. assert num_characters == input_dim if encoder_type == 'bidirectional': transition = RecurrentWithFork( GatedRecurrent(dim=encoder_dim).apply, input_dim, name='encoder_transition') self.encoder = Bidirectional(transition, name='encoder') self.children.append(self.encoder) @application def apply(self, x, x_mask=None): if self.encoder_type is None: return x if self.encoder_type in ['lookup', 'bidirectional']: embed_x = self.embed_label.apply(x) if self.encoder_type == 'lookup': encoded_x = embed_x if self.encoder_type == 'bidirectional': encoded_x = self.encoder.apply(embed_x, x_mask) return encoded_x class Parrot(Initializable, Random): def __init__( self, input_dim=420, # Dimension of the text labels output_dim=63, # Dimension of vocoder fram rnn_h_dim=1024, # Size of rnn hidden state readouts_dim=1024, # Size of readouts (summary of rnn) weak_feedback=False, # Feedback to the top rnn layer full_feedback=False, # Feedback to all rnn layers feedback_noise_level=None, # Amount of noise in feedback layer_norm=False, # Use simple normalization? use_speaker=False, # Condition on the speaker id? num_speakers=21, # How many speakers there are? speaker_dim=128, # Size of speaker embedding which_cost='MSE', # Train with MSE or GMM k_gmm=20, # How many components in the GMM sampling_bias=0, # Make samples more likely (Graves13) epsilon=1e-5, # Numerical stabilities num_characters=43, # how many chars in the labels attention_type='graves', # graves or softmax attention_size=10, # number of gaussians in the attention attention_alignment=1., # audio steps per letter at initialization sharpening_coeff=1., timing_coeff=1., encoder_type=None, encoder_dim=128, raw_output=False, **kwargs): super(Parrot, self).__init__(**kwargs) self.input_dim = input_dim self.output_dim = output_dim self.rnn_h_dim = rnn_h_dim self.readouts_dim = readouts_dim self.layer_norm = layer_norm self.which_cost = which_cost self.use_speaker = use_speaker self.full_feedback = full_feedback self.feedback_noise_level = feedback_noise_level self.epsilon = epsilon self.num_characters = num_characters self.attention_type = attention_type self.attention_alignment = attention_alignment self.attention_size = attention_size self.sharpening_coeff = sharpening_coeff self.timing_coeff = timing_coeff self.encoder_type = encoder_type self.encoder_dim = encoder_dim self.encoded_input_dim = input_dim self.raw_output = raw_output if self.encoder_type == 'bidirectional': self.encoded_input_dim = 2 * encoder_dim if self.feedback_noise_level is not None: self.noise_level_var = tensor.scalar('feedback_noise_level') self.rnn1 = GatedRecurrent(dim=rnn_h_dim, name='rnn1') self.rnn2 = GatedRecurrent(dim=rnn_h_dim, name='rnn2') self.rnn3 = GatedRecurrent(dim=rnn_h_dim, name='rnn3') self.h1_to_readout = Linear( input_dim=rnn_h_dim, output_dim=readouts_dim, name='h1_to_readout') self.h2_to_readout = Linear( input_dim=rnn_h_dim, output_dim=readouts_dim, name='h2_to_readout') self.h3_to_readout = Linear( input_dim=rnn_h_dim, output_dim=readouts_dim, name='h3_to_readout') self.h1_to_h2 = Fork( output_names=['rnn2_inputs', 'rnn2_gates'], input_dim=rnn_h_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='h1_to_h2') self.h1_to_h3 = Fork( output_names=['rnn3_inputs', 'rnn3_gates'], input_dim=rnn_h_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='h1_to_h3') self.h2_to_h3 = Fork( output_names=['rnn3_inputs', 'rnn3_gates'], input_dim=rnn_h_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='h2_to_h3') if which_cost == 'MSE': self.readout_to_output = Linear( input_dim=readouts_dim, output_dim=output_dim, name='readout_to_output') elif which_cost == 'GMM': self.sampling_bias = sampling_bias self.k_gmm = k_gmm self.readout_to_output = Fork( output_names=['gmm_mu', 'gmm_sigma', 'gmm_coeff'], input_dim=readouts_dim, output_dims=[output_dim * k_gmm, output_dim * k_gmm, k_gmm], name='readout_to_output') self.encoder = Encoder( encoder_type, num_characters, input_dim, encoder_dim, name='encoder') self.children = [ self.encoder, self.rnn1, self.rnn2, self.rnn3, self.h1_to_readout, self.h2_to_readout, self.h3_to_readout, self.h1_to_h2, self.h1_to_h3, self.h2_to_h3, self.readout_to_output] self.inp_to_h1 = Fork( output_names=['rnn1_inputs', 'rnn1_gates'], input_dim=self.encoded_input_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='inp_to_h1') self.inp_to_h2 = Fork( output_names=['rnn2_inputs', 'rnn2_gates'], input_dim=self.encoded_input_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='inp_to_h2') self.inp_to_h3 = Fork( output_names=['rnn3_inputs', 'rnn3_gates'], input_dim=self.encoded_input_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='inp_to_h3') self.children += [ self.inp_to_h1, self.inp_to_h2, self.inp_to_h3] self.h1_to_att = Fork( output_names=['alpha', 'beta', 'kappa'], input_dim=rnn_h_dim, output_dims=[attention_size] * 3, name='h1_to_att') self.att_to_readout = Linear( input_dim=self.encoded_input_dim, output_dim=readouts_dim, name='att_to_readout') self.children += [ self.h1_to_att, self.att_to_readout] if use_speaker: self.num_speakers = num_speakers self.speaker_dim = speaker_dim self.embed_speaker = LookupTable(num_speakers, speaker_dim) self.speaker_to_h1 = Fork( output_names=['rnn1_inputs', 'rnn1_gates'], input_dim=speaker_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='speaker_to_h1') self.speaker_to_h2 = Fork( output_names=['rnn2_inputs', 'rnn2_gates'], input_dim=speaker_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='speaker_to_h2') self.speaker_to_h3 = Fork( output_names=['rnn3_inputs', 'rnn3_gates'], input_dim=speaker_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='speaker_to_h3') self.speaker_to_readout = Linear( input_dim=speaker_dim, output_dim=readouts_dim, name='speaker_to_readout') if which_cost == 'MSE': self.speaker_to_output = Linear( input_dim=speaker_dim, output_dim=output_dim, name='speaker_to_output') elif which_cost == 'GMM': self.speaker_to_output = Fork( output_names=['gmm_mu', 'gmm_sigma', 'gmm_coeff'], input_dim=speaker_dim, output_dims=[ output_dim * k_gmm, output_dim * k_gmm, k_gmm], name='speaker_to_output') self.children += [ self.embed_speaker, self.speaker_to_h1, self.speaker_to_h2, self.speaker_to_h3, self.speaker_to_readout, self.speaker_to_output] if full_feedback: self.out_to_h2 = Fork( output_names=['rnn2_inputs', 'rnn2_gates'], input_dim=output_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='out_to_h2') self.out_to_h3 = Fork( output_names=['rnn3_inputs', 'rnn3_gates'], input_dim=output_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='out_to_h3') self.children += [ self.out_to_h2, self.out_to_h3] weak_feedback = True self.weak_feedback = weak_feedback if weak_feedback: self.out_to_h1 = Fork( output_names=['rnn1_inputs', 'rnn1_gates'], input_dim=output_dim, output_dims=[rnn_h_dim, 2 * rnn_h_dim], name='out_to_h1') self.children += [ self.out_to_h1] if self.raw_output: self.sampleRnn = SampleRnn() self.children += [self.sampleRnn] def _allocate(self): self.initial_w = shared_floatx_zeros( (self.encoded_input_dim,), name="initial_w") add_role(self.initial_w, INITIAL_STATE) def symbolic_input_variables(self): features = tensor.tensor3('features') features_mask = tensor.matrix('features_mask') labels = tensor.imatrix('labels') labels_mask = tensor.matrix('labels_mask') start_flag = tensor.scalar('start_flag') if self.use_speaker: speaker = tensor.imatrix('speaker_index') else: speaker = None if self.raw_output: raw_sequence = tensor.itensor3('raw_audio') else: raw_sequence = None return features, features_mask, labels, labels_mask, \ speaker, start_flag, raw_sequence def initial_states(self, batch_size): initial_h1 = self.rnn1.initial_states(batch_size) initial_h2 = self.rnn2.initial_states(batch_size) initial_h3 = self.rnn3.initial_states(batch_size) last_h1 = shared_floatx_zeros((batch_size, self.rnn_h_dim)) last_h2 = shared_floatx_zeros((batch_size, self.rnn_h_dim)) last_h3 = shared_floatx_zeros((batch_size, self.rnn_h_dim)) # Defining for all initial_k = tensor.zeros( (batch_size, self.attention_size), dtype=floatX) last_k = shared_floatx_zeros((batch_size, self.attention_size)) # Trainable initial state for w. Why not for k? initial_w = tensor.repeat(self.initial_w[None, :], batch_size, 0) last_w = shared_floatx_zeros((batch_size, self.encoded_input_dim)) return initial_h1, last_h1, initial_h2, last_h2, initial_h3, last_h3, \ initial_w, last_w, initial_k, last_k @application def compute_cost( self, features, features_mask, labels, labels_mask, speaker, start_flag, batch_size, raw_audio=None): if speaker is None: assert not self.use_speaker target_features = features[1:] mask = features_mask[1:] cell_shape = (mask.shape[0], batch_size, self.rnn_h_dim) gat_shape = (mask.shape[0], batch_size, 2 * self.rnn_h_dim) cell_h1 = tensor.zeros(cell_shape, dtype=floatX) cell_h2 = tensor.zeros(cell_shape, dtype=floatX) cell_h3 = tensor.zeros(cell_shape, dtype=floatX) gat_h1 = tensor.zeros(gat_shape, dtype=floatX) gat_h2 = tensor.zeros(gat_shape, dtype=floatX) gat_h3 = tensor.zeros(gat_shape, dtype=floatX) if self.weak_feedback: input_features = features[:-1] if self.feedback_noise_level: noise = self.theano_rng.normal( size=input_features.shape, avg=0., std=1.) input_features += self.noise_level_var * noise out_cell_h1, out_gat_h1 = self.out_to_h1.apply(input_features) to_normalize = [ out_cell_h1, out_gat_h1] out_cell_h1, out_gat_h1 = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] cell_h1 += out_cell_h1 gat_h1 += out_gat_h1 if self.full_feedback: assert self.weak_feedback out_cell_h2, out_gat_h2 = self.out_to_h2.apply(input_features) out_cell_h3, out_gat_h3 = self.out_to_h3.apply(input_features) to_normalize = [ out_cell_h2, out_gat_h2, out_cell_h3, out_gat_h3] out_cell_h2, out_gat_h2, out_cell_h3, out_gat_h3 = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] cell_h2 += out_cell_h2 gat_h2 += out_gat_h2 cell_h3 += out_cell_h3 gat_h3 += out_gat_h3 if self.use_speaker: speaker = speaker[:, 0] emb_speaker = self.embed_speaker.apply(speaker) emb_speaker = tensor.shape_padleft(emb_speaker) spk_cell_h1, spk_gat_h1 = self.speaker_to_h1.apply(emb_speaker) spk_cell_h2, spk_gat_h2 = self.speaker_to_h2.apply(emb_speaker) spk_cell_h3, spk_gat_h3 = self.speaker_to_h3.apply(emb_speaker) to_normalize = [ spk_cell_h1, spk_gat_h1, spk_cell_h2, spk_gat_h2, spk_cell_h3, spk_gat_h3] spk_cell_h1, spk_gat_h1, spk_cell_h2, spk_gat_h2, \ spk_cell_h3, spk_gat_h3, = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] cell_h1 = spk_cell_h1 + cell_h1 cell_h2 = spk_cell_h2 + cell_h2 cell_h3 = spk_cell_h3 + cell_h3 gat_h1 = spk_gat_h1 + gat_h1 gat_h2 = spk_gat_h2 + gat_h2 gat_h3 = spk_gat_h3 + gat_h3 initial_h1, last_h1, initial_h2, last_h2, initial_h3, last_h3, \ initial_w, last_w, initial_k, last_k = \ self.initial_states(batch_size) # If it's a new example, use initial states. input_h1 = tensor.switch( start_flag, initial_h1, last_h1) input_h2 = tensor.switch( start_flag, initial_h2, last_h2) input_h3 = tensor.switch( start_flag, initial_h3, last_h3) input_w = tensor.switch( start_flag, initial_w, last_w) input_k = tensor.switch( start_flag, initial_k, last_k) context_oh = self.encoder.apply(labels) * \ tensor.shape_padright(labels_mask) u = tensor.shape_padleft( tensor.arange(labels.shape[1], dtype=floatX), 2) def step( inp_h1_t, gat_h1_t, inp_h2_t, gat_h2_t, inp_h3_t, gat_h3_t, h1_tm1, h2_tm1, h3_tm1, k_tm1, w_tm1, context_oh): attinp_h1, attgat_h1 = self.inp_to_h1.apply(w_tm1) inp_h1_t += attinp_h1 gat_h1_t += attgat_h1 h1_t = self.rnn1.apply( inp_h1_t, gat_h1_t, h1_tm1, iterate=False) a_t, b_t, k_t = self.h1_to_att.apply(h1_t) if self.attention_type == "softmax": a_t = tensor.nnet.softmax(a_t) + self.epsilon else: a_t = tensor.exp(a_t) + self.epsilon b_t = tensor.exp(b_t) + self.epsilon k_t = k_tm1 + self.attention_alignment * tensor.exp(k_t) a_t_ = a_t a_t = tensor.shape_padright(a_t) b_t = tensor.shape_padright(b_t) k_t_ = tensor.shape_padright(k_t) # batch size X att size X len context if self.attention_type == "softmax": # numpy.sqrt(1/(2*numpy.pi)) is the weird number phi_t = 0.3989422917366028 * tensor.sum( a_t * tensor.sqrt(b_t) * tensor.exp(-0.5 * b_t * (k_t_ - u)**2), axis=1) else: phi_t = tensor.sum( a_t * tensor.exp(-b_t * (k_t_ - u)**2), axis=1) # batch size X len context X num letters w_t = (tensor.shape_padright(phi_t) * context_oh).sum(axis=1) attinp_h2, attgat_h2 = self.inp_to_h2.apply(w_t) attinp_h3, attgat_h3 = self.inp_to_h3.apply(w_t) inp_h2_t += attinp_h2 gat_h2_t += attgat_h2 inp_h3_t += attinp_h3 gat_h3_t += attgat_h3 h1inp_h2, h1gat_h2 = self.h1_to_h2.apply(h1_t) h1inp_h3, h1gat_h3 = self.h1_to_h3.apply(h1_t) to_normalize = [ h1inp_h2, h1gat_h2, h1inp_h3, h1gat_h3] h1inp_h2, h1gat_h2, h1inp_h3, h1gat_h3 = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] h2_t = self.rnn2.apply( inp_h2_t + h1inp_h2, gat_h2_t + h1gat_h2, h2_tm1, iterate=False) h2inp_h3, h2gat_h3 = self.h2_to_h3.apply(h2_t) to_normalize = [ h2inp_h3, h2gat_h3] h2inp_h3, h2gat_h3 = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] h3_t = self.rnn3.apply( inp_h3_t + h1inp_h3 + h2inp_h3, gat_h3_t + h1gat_h3 + h2gat_h3, h3_tm1, iterate=False) return h1_t, h2_t, h3_t, k_t, w_t, phi_t, a_t_ (h1, h2, h3, k, w, phi, pi_att), scan_updates = theano.scan( fn=step, sequences=[cell_h1, gat_h1, cell_h2, gat_h2, cell_h3, gat_h3], non_sequences=[context_oh], outputs_info=[ input_h1, input_h2, input_h3, input_k, input_w, None, None]) h1_out = self.h1_to_readout.apply(h1) h2_out = self.h2_to_readout.apply(h2) h3_out = self.h3_to_readout.apply(h3) to_normalize = [ h1_out, h2_out, h3_out] h1_out, h2_out, h3_out = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] readouts = h1_out + h2_out + h3_out if self.use_speaker: readouts += self.speaker_to_readout.apply(emb_speaker) readouts += self.att_to_readout.apply(w) predicted = self.readout_to_output.apply(readouts) if self.which_cost == 'MSE': if self.use_speaker: predicted += self.speaker_to_output.apply(emb_speaker) cost = tensor.sum((predicted - target_features) ** 2, axis=-1) next_x = predicted # Dummy value for coeff coeff = predicted elif self.which_cost == 'GMM': mu, sigma, coeff = predicted if self.use_speaker: spk_to_out = self.speaker_to_output.apply(emb_speaker) mu += spk_to_out[0] sigma += spk_to_out[1] coeff += spk_to_out[2] # When training there should not be sampling_bias sigma = tensor.exp(sigma) + self.epsilon coeff = tensor.nnet.softmax( coeff.reshape( (-1, self.k_gmm))).reshape( coeff.shape) + self.epsilon cost = cost_gmm(target_features, mu, sigma, coeff) next_x = sample_gmm(mu, sigma, coeff, self.theano_rng) cost = (cost * mask).sum() / (mask.sum() + 1e-5) + 0. * start_flag updates = [] updates.append((last_h1, h1[-1])) updates.append((last_h2, h2[-1])) updates.append((last_h3, h3[-1])) updates.append((last_k, k[-1])) updates.append((last_w, w[-1])) cost_raw = None if self.raw_output: raw_mask = tensor.extra_ops.repeat(features_mask, 80, axis=0) raw_mask = raw_mask.dimshuffle(1, 0) # breakpointOp = PdbBreakpoint("Raw mask breakpoint") # condition = tensor.gt(raw_mask.shape[0], 0) # raw_mask = breakpointOp(condition, raw_mask) predicted_transposed = predicted.dimshuffle(1, 0, 2) last_h0, last_big_h0 = self.sampleRnn.initial_states(batch_size) raw_audio_reshaped = raw_audio.dimshuffle(1, 0, 2) raw_audio_reshaped = raw_audio_reshaped.reshape((raw_audio_reshaped.shape[0], -1)) cost_raw, ip_cost, all_params, ip_params, other_params, new_h0, new_big_h0 =\ self.sampleRnn.apply(raw_audio_reshaped, predicted_transposed, last_h0, last_big_h0, start_flag, raw_mask) if self.sampleRnn.N_RNN == 1: new_h0 = tensor.unbroadcast(new_h0, 1) new_big_h0 = tensor.unbroadcast(new_big_h0, 1) updates.append((last_h0, new_h0)) updates.append((last_big_h0, new_big_h0)) # cost = cost + 80.*cost_raw alpha_ = numpy.float32(0.) beta_ = numpy.float32(1.) cost = alpha_*cost + beta_*cost_raw attention_vars = [next_x, k, w, coeff, phi, pi_att] return cost, scan_updates + updates, attention_vars, cost_raw @application def sample_model_fun( self, labels, labels_mask, speaker, num_samples, seq_size): initial_h1, last_h1, initial_h2, last_h2, initial_h3, last_h3, \ initial_w, last_w, initial_k, last_k = \ self.initial_states(num_samples) initial_x = numpy.zeros( (num_samples, self.output_dim), dtype=floatX) cell_shape = (seq_size, num_samples, self.rnn_h_dim) gat_shape = (seq_size, num_samples, 2 * self.rnn_h_dim) cell_h1 = tensor.zeros(cell_shape, dtype=floatX) cell_h2 = tensor.zeros(cell_shape, dtype=floatX) cell_h3 = tensor.zeros(cell_shape, dtype=floatX) gat_h1 = tensor.zeros(gat_shape, dtype=floatX) gat_h2 = tensor.zeros(gat_shape, dtype=floatX) gat_h3 = tensor.zeros(gat_shape, dtype=floatX) if self.use_speaker: speaker = speaker[:, 0] emb_speaker = self.embed_speaker.apply(speaker) # Applied before the broadcast. spk_readout = self.speaker_to_readout.apply(emb_speaker) spk_output = self.speaker_to_output.apply(emb_speaker) # Add dimension to repeat with time. emb_speaker = tensor.shape_padleft(emb_speaker) spk_cell_h1, spk_gat_h1 = self.speaker_to_h1.apply(emb_speaker) spk_cell_h2, spk_gat_h2 = self.speaker_to_h2.apply(emb_speaker) spk_cell_h3, spk_gat_h3 = self.speaker_to_h3.apply(emb_speaker) to_normalize = [ spk_cell_h1, spk_gat_h1, spk_cell_h2, spk_gat_h2, spk_cell_h3, spk_gat_h3] spk_cell_h1, spk_gat_h1, spk_cell_h2, spk_gat_h2, \ spk_cell_h3, spk_gat_h3, = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] cell_h1 += spk_cell_h1 cell_h2 += spk_cell_h2 cell_h3 += spk_cell_h3 gat_h1 += spk_gat_h1 gat_h2 += spk_gat_h2 gat_h3 += spk_gat_h3 context_oh = self.encoder.apply(labels) * \ tensor.shape_padright(labels_mask) u = tensor.shape_padleft( tensor.arange(labels.shape[1], dtype=floatX), 2) def sample_step( inp_cell_h1_t, inp_gat_h1_t, inp_cell_h2_t, inp_gat_h2_t, inp_cell_h3_t, inp_gat_h3_t, x_tm1, h1_tm1, h2_tm1, h3_tm1, k_tm1, w_tm1): cell_h1_t = inp_cell_h1_t cell_h2_t = inp_cell_h2_t cell_h3_t = inp_cell_h3_t gat_h1_t = inp_gat_h1_t gat_h2_t = inp_gat_h2_t gat_h3_t = inp_gat_h3_t attinp_h1, attgat_h1 = self.inp_to_h1.apply(w_tm1) cell_h1_t += attinp_h1 gat_h1_t += attgat_h1 if self.weak_feedback: out_cell_h1_t, out_gat_h1_t = self.out_to_h1.apply(x_tm1) to_normalize = [ out_cell_h1_t, out_gat_h1_t] out_cell_h1_t, out_gat_h1_t = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] cell_h1_t += out_cell_h1_t gat_h1_t += out_gat_h1_t if self.full_feedback: out_cell_h2_t, out_gat_h2_t = self.out_to_h2.apply(x_tm1) out_cell_h3_t, out_gat_h3_t = self.out_to_h3.apply(x_tm1) to_normalize = [ out_cell_h2_t, out_gat_h2_t, out_cell_h3_t, out_gat_h3_t] out_cell_h2_t, out_gat_h2_t, \ out_cell_h3_t, out_gat_h3_t = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] cell_h2_t += out_cell_h2_t cell_h3_t += out_cell_h3_t gat_h2_t += out_gat_h2_t gat_h3_t += out_gat_h3_t h1_t = self.rnn1.apply( cell_h1_t, gat_h1_t, h1_tm1, iterate=False) a_t, b_t, k_t = self.h1_to_att.apply(h1_t) if self.attention_type == "softmax": a_t = tensor.nnet.softmax(a_t) + self.epsilon else: a_t = tensor.exp(a_t) + self.epsilon b_t = tensor.exp(b_t) * self.sharpening_coeff + self.epsilon k_t = k_tm1 + self.attention_alignment * \ tensor.exp(k_t) / self.timing_coeff a_t_ = a_t a_t = tensor.shape_padright(a_t) b_t = tensor.shape_padright(b_t) k_t_ = tensor.shape_padright(k_t) # batch size X att size X len context if self.attention_type == "softmax": # numpy.sqrt(1/(2*numpy.pi)) is the weird number phi_t = 0.3989422917366028 * tensor.sum( a_t * tensor.sqrt(b_t) * tensor.exp(-0.5 * b_t * (k_t_ - u)**2), axis=1) else: phi_t = tensor.sum( a_t * tensor.exp(-b_t * (k_t_ - u)**2), axis=1) # batch size X len context X num letters w_t = (tensor.shape_padright(phi_t) * context_oh).sum(axis=1) attinp_h2, attgat_h2 = self.inp_to_h2.apply(w_t) attinp_h3, attgat_h3 = self.inp_to_h3.apply(w_t) cell_h2_t += attinp_h2 gat_h2_t += attgat_h2 cell_h3_t += attinp_h3 gat_h3_t += attgat_h3 h1inp_h2, h1gat_h2 = self.h1_to_h2.apply(h1_t) h1inp_h3, h1gat_h3 = self.h1_to_h3.apply(h1_t) to_normalize = [ h1inp_h2, h1gat_h2, h1inp_h3, h1gat_h3] h1inp_h2, h1gat_h2, h1inp_h3, h1gat_h3 = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] h2_t = self.rnn2.apply( cell_h2_t + h1inp_h2, gat_h2_t + h1gat_h2, h2_tm1, iterate=False) h2inp_h3, h2gat_h3 = self.h2_to_h3.apply(h2_t) to_normalize = [ h2inp_h3, h2gat_h3] h2inp_h3, h2gat_h3 = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] h3_t = self.rnn3.apply( cell_h3_t + h1inp_h3 + h2inp_h3, gat_h3_t + h1gat_h3 + h2gat_h3, h3_tm1, iterate=False) h1_out_t = self.h1_to_readout.apply(h1_t) h2_out_t = self.h2_to_readout.apply(h2_t) h3_out_t = self.h3_to_readout.apply(h3_t) to_normalize = [ h1_out_t, h2_out_t, h3_out_t] h1_out_t, h2_out_t, h3_out_t = \ [_apply_norm(x, self.layer_norm) for x in to_normalize] readout_t = h1_out_t + h2_out_t + h3_out_t readout_t += self.att_to_readout.apply(w_t) if self.use_speaker: readout_t += spk_readout output_t = self.readout_to_output.apply(readout_t) if self.which_cost == 'MSE': predicted_x_t = output_t if self.use_speaker: predicted_x_t += spk_output # Dummy value for coeff_t coeff_t = predicted_x_t elif self.which_cost == "GMM": mu_t, sigma_t, coeff_t = output_t if self.use_speaker: mu_t += spk_output[0] sigma_t += spk_output[1] coeff_t += spk_output[2] sigma_t = tensor.exp(sigma_t - self.sampling_bias) + \ self.epsilon coeff_t = tensor.nnet.softmax( coeff_t.reshape( (-1, self.k_gmm)) * (1. + self.sampling_bias)).reshape( coeff_t.shape) + self.epsilon predicted_x_t = sample_gmm( mu_t, sigma_t, coeff_t, self.theano_rng) return predicted_x_t, h1_t, h2_t, h3_t, \ k_t, w_t, coeff_t, phi_t, a_t_ (sample_x, h1, h2, h3, k, w, pi, phi, pi_att), updates = theano.scan( fn=sample_step, sequences=[ cell_h1, gat_h1, cell_h2, gat_h2, cell_h3, gat_h3], non_sequences=[], outputs_info=[ initial_x, initial_h1, initial_h2, initial_h3, initial_k, initial_w, None, None, None]) return sample_x, k, w, pi, phi, pi_att, updates def sample_model( self, labels_tr, labels_mask_tr, features_mask_tr, speaker_tr, num_samples, num_steps): features, features_mask, labels, labels_mask, speaker, start_flag, raw_sequence = \ self.symbolic_input_variables() sample_x, k, w, pi, phi, pi_att, updates = \ self.sample_model_fun( labels, labels_mask, speaker, num_samples, num_steps) theano_inputs = [labels, labels_mask] numpy_inputs = (labels_tr, labels_mask_tr) if self.use_speaker: theano_inputs += [speaker] numpy_inputs += (speaker_tr,) return function( theano_inputs, [sample_x, k, w, pi, phi, pi_att], updates=updates)(*numpy_inputs) def sample_using_input(self, data_tr, num_samples): # Used to predict the values using the dataset features, features_mask, labels, labels_mask, speaker, start_flag, raw_sequence = \ self.symbolic_input_variables() cost, updates, attention_vars = self.compute_cost( features, features_mask, labels, labels_mask, speaker, start_flag, num_samples) sample_x, k, w, pi, phi, pi_att = attention_vars theano_vars = [ features, features_mask, labels, labels_mask, speaker, start_flag] theano_vars = [x for x in theano_vars if x is not None] theano_vars = list(set(theano_vars)) theano_vars = {x.name: x for x in theano_vars} theano_inputs = [] numpy_inputs = [] for key in data_tr.keys(): theano_inputs.append(theano_vars[key]) numpy_inputs.append(data_tr[key]) return function( theano_inputs, [sample_x, k, w, pi, phi, pi_att], updates=updates)(*numpy_inputs)