-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuler_primes.py
364 lines (309 loc) · 7.58 KB
/
euler_primes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
####euler 3
##for i in range(100):
## if i%19==0 and i%20==0:
## print i
##
##def sumofsquares(n):
## result=0
## for i in range(n+1):
## result+=i**2
## return result
##
##def squareofsums(n):
## result=0
## for i in range(n+1):
## result+=i
## result=result**2
## return result
##
####print sumofsquares(100)
####print squareofsums(100)-sumofsquares(100)
####
##
##
##dic1={0:1,1:1,}
##print dic1[0]
##dic1[2]=2
##dic1[3]=3
##dic1[4]=5
##print dic1
###for i in range(8):
### if i in dic1:
### print dic1[i]
##
##def fibonacci(n):
## if n==0 or n==1:
## return 1
## else:
## return fibonacci(n-1)+fibonacci(n-2)
##
##print fibonacci(23)
##
##def fib(n):
## if n in dic1:
## return dic1[n]
## else:
## dic1[n]=fib(n-1)+fib(n-2)
## return dic1[n]
##
##print fib(23)
import math
dicprime={1:2,2:3,3:5,} #dictionary for the first few primes that we'll add to for subsequent ones
def prime(n): ##function to call the nth prime number. see bottom for other version that worked
if n in dicprime:
return dicprime[n]
else:
z=dicprime[n-1]+2
divisors=0
result=1
while result>0:
for i in range(1,n):
if z%dicprime[i]==0:
divisors+=1
break
if dicprime[i]>math.sqrt(z):
break
if divisors==0:
result=0
else:
z+=2
divisors=0
dicprime[n]=z
return dicprime[n]
n=20000
for i in range(1,n+1):
prime(i)
#print dicprime[500]
def last_prime_less_than_x(x):
numguesses=0
n=int(x/math.log(x))
while prime(n)<x:
numguesses+=1
n+=1
print numguesses
print n-1
return prime(n-1)
#print last_prime_less_than_x(20000)
def prime_close_to_x(x):
low=int(x/math.log(x))
high=int(2*x/math.log(x))
n=int((low+high)/2)
numguesses=0
while abs(x-prime(n))>int(5*math.log(x)):
numguesses+=1
if prime(n)>x:
high=n
else:
low=n
n=int((high+low)/2)
print numguesses
print n-1
return prime(n-1)
#print prime(168)
print prime_close_to_x(200000)
#print dicprime
##list_of_primes=[]
##for i in range(1,17985):
## list_of_primes+=[dicprime[i],]
##
###print list_of_primes
##
##print sum(list_of_primes)
##list1=[]
##
##a='600851475143'
##for i in range(len(a)):
## list1+=([a[i]])
##
##b=600851475143
##
##for i in range(len(list1)):
## list1[i]=int(list1[i])
##
##list1+=[5]
##
##print list1
##
##
##
##print sum(list1)
##
##list2=[]
##
##def findprimefactors(n): #recursive function that finds the prime factors
## for i in range(1,n):
## if n%i==0:
## c=i
## print n/c
## findprimefactors(c)
##
##
##print findprimefactors(1024)
##for i in range(1,100000000,2):
## if b%i==0:
## c=i
## print b/c
## list2+=[i]
##for i in range(len(list1)):
## print int(list1[i])
##
##for i in range(len(list1)):
## print sum(int(list1[i]))
##def prime(n): ##function to call the nth prime number. works as written up through 37
## if n in dicprime:
## return dicprime[n]
## else:
## z=prime(n-1)+2
## #print z
## divisors=0
## result=1
## while result>0:
##
## #print prime(i),'='+'prime i'
## #print z%prime(i),'='+'current guess z modulo prime i'
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## result=0
## else:
## z+=2
## divisors=0
## return z
## z+=1 ##should be able to insert testfunction here, but it doesn't work
## divisors=0
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## return z
## else:
## z+=1
## divisors=0
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## return z
## else:
## z+=1
## divisors=0
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## return z
## else:
## z+=1
## divisors=0
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## return z
## else:
## z+=1
## divisors=0
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## return z
## else:
## z+=1
## divisors=0
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## return z
##
## return z
##def testfunction(z,n): ##recursive function to insert into prime function (see note below)
## divisors=0
## for i in range(1,n):
## print prime(i)
## if z%prime(i)==0:
## divisors+=1
## print divisors
##
## if divisors==0:
## return z
## else:
## return testfunction(z+1,n)
##
##print testfunction(24,7)
#for i in range(12,14):
# print prime(i)
##def testfunction(n):
## z=30
## for i in range(2,n):
## while z%i==0:
## z+=1
## return z
##
##
##def prime(n):
## if n==1:
## return 2
## else:
## z=prime(n-1)+1
## #print z
## while i<n:
## #print prime(i),'='+'prime i'
## #print z%prime(i),'='+'current guess z modulo prime i'
## if z%prime(i)!=0:
## return z
##
## else:
## z+=1
## #print z,'='+'new guess for z'
## return z
##
##
##
##
##
##for i in range(1,14):
## print prime(i)
####
####def testfunction(n):
#### z=20
#### for i in range(2,n):
#### if z%i!=0:
#### return z
#### else:
#### z+=1
####
##
##
##z=range(100)
##print z
##print z[3]
##z.pop(3)
##print z
##
##def prime(n):
## potentialprimes=range(2,n+1)
##
##def prime(n): ##function to call the nth prime number.
## if n in dicprime:
## return dicprime[n]
## else:
## z=prime(n-1)+1
## divisors=0
## result=1
## while result>0:
## for i in range(1,n):
## if z%prime(i)==0:
## divisors+=1
## if divisors==0:
## result=0
## else:
## z+=1
## divisors=0
## dicprime[n]=z
## return dicprime[n]
##
##for i in range(1,20):
## print prime(i)