-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathsample.py
executable file
·138 lines (120 loc) · 4.83 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#-*- coding:utf-8 -*-
from diffusion_model.trainer import GaussianDiffusion, num_to_groups
from diffusion_model.trainer import GaussianDiffusion, Trainer
from diffusion_model.unet import create_model
from torchvision.transforms import Compose, Lambda
from utils.dtypes import LabelEnum
import nibabel as nib
import torchio as tio
import numpy as np
import argparse
import torch
import os
import glob
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--inputfolder', type=str, default="dataset/whole_head/mask")
parser.add_argument('-e', '--exportfolder', type=str, default="exports/")
parser.add_argument('--input_size', type=int, default=128)
parser.add_argument('--depth_size', type=int, default=128)
parser.add_argument('--num_channels', type=int, default=64)
parser.add_argument('--num_res_blocks', type=int, default=1)
parser.add_argument('--batchsize', type=int, default=1)
parser.add_argument('--num_samples', type=int, default=1)
parser.add_argument('--num_class_labels', type=int, default=3)
parser.add_argument('--timesteps', type=int, default=250)
parser.add_argument('-w', '--weightfile', type=str, default="model/model_128.pt")
args = parser.parse_args()
exportfolder = args.exportfolder
inputfolder = args.inputfolder
input_size = args.input_size
depth_size = args.depth_size
batchsize = args.batchsize
weightfile = args.weightfile
num_channels = args.num_channels
num_res_blocks = args.num_res_blocks
num_samples = args.num_samples
in_channels = args.num_class_labels
out_channels = 1
device = "cuda"
mask_list = sorted(glob.glob(f"{inputfolder}/*.nii.gz"))
print(len(mask_list))
def resize_img_4d(input_img):
h, w, d, c = input_img.shape
result_img = np.zeros((input_size, input_size, depth_size, in_channels-1))
if h != input_size or w != input_size or d != depth_size:
for ch in range(c):
buff = input_img.copy()[..., ch]
img = tio.ScalarImage(tensor=buff[np.newaxis, ...])
cop = tio.Resize((input_size, input_size, depth_size))
img = np.asarray(cop(img))[0]
result_img[..., ch] += img
return result_img
else:
return input_img
def label2masks(masked_img):
result_img = np.zeros(masked_img.shape + (in_channels-1,))
result_img[masked_img==LabelEnum.BRAINAREA.value, 0] = 1
result_img[masked_img==LabelEnum.TUMORAREA.value, 1] = 1
return result_img
input_transform = Compose([
Lambda(lambda t: torch.tensor(t).float()),
Lambda(lambda t: (t * 2) - 1),
Lambda(lambda t: t.permute(3, 0, 1, 2)),
Lambda(lambda t: t.unsqueeze(0)),
Lambda(lambda t: t.transpose(4, 2))
])
model = create_model(input_size, num_channels, num_res_blocks, in_channels=in_channels, out_channels=out_channels).cuda()
diffusion = GaussianDiffusion(
model,
image_size = input_size,
depth_size = depth_size,
timesteps = args.timesteps, # number of steps
loss_type = 'L1',
with_condition=True,
).cuda()
diffusion.load_state_dict(torch.load(weightfile)['ema'])
print("Model Loaded!")
# +
img_dir = exportfolder + "/image"
msk_dir = exportfolder + "/mask"
os.makedirs(img_dir, exist_ok=True)
os.makedirs(msk_dir, exist_ok=True)
for k, inputfile in enumerate(mask_list):
left = len(mask_list) - (k+1)
print("LEFT: ", left)
ref = nib.load(inputfile)
msk_name = inputfile.split('/')[-1]
refImg = ref.get_fdata()
img = label2masks(refImg)
img = resize_img_4d(img)
input_tensor = input_transform(img)
batches = num_to_groups(num_samples, batchsize)
steps = len(batches)
sample_count = 0
print(f"All Step: {steps}")
counter = 0
for i, bsize in enumerate(batches):
print(f"Step [{i+1}/{steps}]")
condition_tensors, counted_samples = [], []
for b in range(bsize):
condition_tensors.append(input_tensor)
counted_samples.append(sample_count)
sample_count += 1
condition_tensors = torch.cat(condition_tensors, 0).cuda()
all_images_list = list(map(lambda n: diffusion.sample(batch_size=n, condition_tensors=condition_tensors), [bsize]))
all_images = torch.cat(all_images_list, dim=0)
all_images = all_images.unsqueeze(1)
all_images = all_images.transpose(5, 3)
sampleImages = all_images.cpu()#.numpy()
for b, c in enumerate(counted_samples):
counter = counter + 1
sampleImage = sampleImages[b][0]
sampleImage = sampleImage.numpy()
sampleImage=sampleImage.reshape(refImg.shape)
nifti_img = nib.Nifti1Image(sampleImage, affine=ref.affine)
nib.save(nifti_img, os.path.join(img_dir, f'{counter}_{msk_name}'))
nib.save(ref, os.path.join(msk_dir, f'{counter}_{msk_name}'))
torch.cuda.empty_cache()
print("OK!")