-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
258 lines (223 loc) · 9.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
"""People Counter."""
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit person to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import time
import socket
import json
import cv2
import logging as log
import paho.mqtt.client as mqtt
from argparse import ArgumentParser
from inference import Network
# MQTT server environment variables
HOSTNAME = socket.gethostname()
IPADDRESS = socket.gethostbyname(HOSTNAME)
MQTT_HOST = IPADDRESS
MQTT_PORT = 3001
MQTT_KEEPALIVE_INTERVAL = 60
def build_argparser():
"""
Parse command line arguments.
:return: command line arguments
"""
parser = ArgumentParser()
parser.add_argument("-m", "--model", required=True, type=str,
help="Path to an xml file with a trained model.")
parser.add_argument("-i", "--input", required=True, type=str,
help="Path to image or video file")
parser.add_argument("-l", "--cpu_extension", required=False, type=str,
default=None,
help="MKLDNN (CPU)-targeted custom layers."
"Absolute path to a shared library with the"
"kernels impl.")
parser.add_argument("-d", "--device", type=str, default="CPU",
help="Specify the target device to infer on: "
"CPU, GPU, FPGA or MYRIAD is acceptable. Sample "
"will look for a suitable plugin for device "
"specified (CPU by default)")
parser.add_argument("-pt", "--prob_threshold", type=float, default=0.5,
help="Probability threshold for detections filtering"
"(0.5 by default)")
return parser
def connect_mqtt():
# Connect to the MQTT client ###
client = mqtt.Client()
client.connect(MQTT_HOST, MQTT_PORT, MQTT_KEEPALIVE_INTERVAL)
return client
def draw_boxes(frame,output_result,prob_threshold, width, height):
"""
Draw bounding boxes onto the frame.
:param frame: frame from camera/video
:param result: list contains the data comming from inference
:return: person count and frame
"""
counter=0
# Start coordinate, here (xmin, ymin)
# represents the top left corner of rectangle
start_point = None
# Ending coordinate, here (xmax, ymax)
# represents the bottom right corner of rectangle
end_point = None
# Blue color in BGR
color = (0, 255, 0)
# Line thickness of 2 px
thickness = 1
for box in output_result[0][0]: # Output shape is 1x1x100x7
if box[2] > prob_threshold:
start_point = (int(box[3] * width), int(box[4] * height))
end_point = (int(box[5] * width), int(box[6] * height))
# Using cv2.rectangle() method
# Draw a rectangle with Green line borders of thickness of 1 px
frame = cv2.rectangle(frame, start_point, end_point, color,thickness)
counter+=1
return frame, counter
def infer_on_stream(args, client):
"""
Initialize the inference network, stream video to network,
and output stats and video.
:param args: Command line arguments parsed by `build_argparser()`
:param client: MQTT client
:return: None
"""
# Input arguments
modelArgs = args.model
deviceArgs = args.device
cpuExtensionArgs = args.cpu_extension
propThresholdArgs = args.prob_threshold
filePathArgs = args.input
# Initialise the class
infer_network = Network()
#Load the model through `infer_network`
infer_network.load_model(modelArgs,deviceArgs,cpuExtensionArgs)
net_input_shape = infer_network.get_input_shape()
# Set Probability threshold for detections
prob_threshold = propThresholdArgs
# Handle image, video or webcam
# Create a flag for single images
# Flag for the input image
single_image_mode = False
# Check if the input is a webcam
if filePathArgs == 'CAM':
filePathArgs = 0
elif filePathArgs.endswith('.jpg') or filePathArgs.endswith('.bmp'):
single_image_mode = True
# Handle the input stream
# Get and open video capture
capture = cv2.VideoCapture(filePathArgs)
capture.open(filePathArgs)
# Grab the shape of the input
width = int(capture.get(3))
height = int(capture.get(4))
# initlise some variable
report = 0
counter = 0
counter_prev = 0
duration_prev = 0
counter_total = 0
dur = 0
request_id=0
# Process frames until the video ends, or process is exited
while capture.isOpened():
# Read the next frame
flag, frame = capture.read()
if not flag:
break
key_pressed = cv2.waitKey(60)
# Pre-process the frame
#Re-size the frame to inputshape_width x inputshape_height
p_frame = cv2.resize(frame, (net_input_shape[3], net_input_shape[2]))
p_frame = p_frame.transpose((2,0,1))
p_frame = p_frame.reshape(1, *p_frame.shape)
#Start asynchronous inference for specified request
#Perform inference on the frame
duration_report = None
inf_start = time.time()
infer_network.exec_net(p_frame)
# Get the output of inference
if infer_network.wait() == 0:
det_time = time.time() - inf_start
# Results of the output layer of the network
output_results = infer_network.get_output()
#Extract any desired stats from the results
#Update the frame to include detected bounding boxes
frame_with_box, pointer = draw_boxes(frame, output_results, prob_threshold, width, height)
#Display inference time
inf_time_message = "Manasse_Ngudia | Inference time: {:.3f}ms"\
.format(det_time * 1000)
cv2.putText(frame_with_box, inf_time_message, (15, 15),
cv2.FONT_HERSHEY_COMPLEX, 0.45, (200, 10, 10), 1)
#Calculate and send relevant information on
### current_count, total_count and duration to the MQTT server ###
### Topic "person": keys of "count" and "total" ###
### Topic "person/duration": key of "duration" ###
if pointer != counter:
counter_prev = counter
counter = pointer
if dur >= 3:
duration_prev = dur
dur = 0
else:
dur = duration_prev + dur
duration_prev = 0 # unknown, not needed in this case
else:
dur += 1
if dur >= 3:
report = counter
if dur == 3 and counter > counter_prev:
counter_total += counter - counter_prev
elif dur == 3 and counter < counter_prev:
duration_report = int((duration_prev / 10.0) * 1000)
client.publish('person',
payload=json.dumps({
'count': report, 'total': counter_total}),
qos=0, retain=False)
if duration_report is not None:
client.publish('person/duration',
payload=json.dumps({'duration': duration_report}),
qos=0, retain=False)
#Send frame to the ffmpeg server
# Resize the frame
#frame = cv2.resize(frame, (768, 432))
sys.stdout.buffer.write(frame_with_box)
sys.stdout.flush()
if single_image_mode:
cv2.imwrite('output_image.jpg', frame_with_box)
# Break if escapturee key pressed
if key_pressed == 27:
break
# Release the out writer, captureture, and destroy any OpenCV windows
capture.release()
cv2.destroyAllWindows()
client.disconnect()
def main():
"""
Load the network and parse the output.
:return: None
"""
# Grab command line args
args = build_argparser().parse_args()
# Connect to the MQTT server
client = connect_mqtt()
# Perform inference on the input stream
infer_on_stream(args, client)
if __name__ == '__main__':
main()