-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathreference_processor.rs
557 lines (485 loc) · 22.1 KB
/
reference_processor.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
use std::collections::HashSet;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
use std::sync::Mutex;
use std::vec::Vec;
use crate::plan::is_nursery_gc;
use crate::scheduler::ProcessEdgesWork;
use crate::scheduler::WorkBucketStage;
use crate::util::ObjectReference;
use crate::util::VMWorkerThread;
use crate::vm::ReferenceGlue;
use crate::vm::VMBinding;
/// Holds all reference processors for each weak reference Semantics.
/// Currently this is based on Java's weak reference semantics (soft/weak/phantom).
/// We should make changes to make this general rather than Java specific.
pub struct ReferenceProcessors {
soft: ReferenceProcessor,
weak: ReferenceProcessor,
phantom: ReferenceProcessor,
}
impl ReferenceProcessors {
pub fn new() -> Self {
ReferenceProcessors {
soft: ReferenceProcessor::new(Semantics::SOFT),
weak: ReferenceProcessor::new(Semantics::WEAK),
phantom: ReferenceProcessor::new(Semantics::PHANTOM),
}
}
pub fn get(&self, semantics: Semantics) -> &ReferenceProcessor {
match semantics {
Semantics::SOFT => &self.soft,
Semantics::WEAK => &self.weak,
Semantics::PHANTOM => &self.phantom,
}
}
pub fn add_soft_candidate(&self, reff: ObjectReference) {
trace!("Add soft candidate: {}", reff);
self.soft.add_candidate(reff);
}
pub fn add_weak_candidate(&self, reff: ObjectReference) {
trace!("Add weak candidate: {}", reff);
self.weak.add_candidate(reff);
}
pub fn add_phantom_candidate(&self, reff: ObjectReference) {
trace!("Add phantom candidate: {}", reff);
self.phantom.add_candidate(reff);
}
/// This will invoke enqueue for each reference processor, which will
/// call back to the VM to enqueue references whose referents are cleared
/// in this GC.
pub fn enqueue_refs<VM: VMBinding>(&self, tls: VMWorkerThread) {
self.soft.enqueue::<VM>(tls);
self.weak.enqueue::<VM>(tls);
self.phantom.enqueue::<VM>(tls);
}
/// A separate reference forwarding step. Normally when we scan refs, we deal with forwarding.
/// However, for some plans like mark compact, at the point we do ref scanning, we do not know
/// the forwarding addresses yet, thus we cannot do forwarding during scan refs. And for those
/// plans, this separate step is required.
pub fn forward_refs<E: ProcessEdgesWork>(&self, trace: &mut E, mmtk: &'static MMTK<E::VM>) {
debug_assert!(
mmtk.get_plan().constraints().needs_forward_after_liveness,
"A plan with needs_forward_after_liveness=false does not need a separate forward step"
);
self.soft
.forward::<E>(trace, is_nursery_gc(mmtk.get_plan()));
self.weak
.forward::<E>(trace, is_nursery_gc(mmtk.get_plan()));
self.phantom
.forward::<E>(trace, is_nursery_gc(mmtk.get_plan()));
}
// Methods for scanning weak references. It needs to be called in a decreasing order of reference strengths, i.e. soft > weak > phantom
/// Scan soft references.
pub fn scan_soft_refs<E: ProcessEdgesWork>(&self, trace: &mut E, mmtk: &'static MMTK<E::VM>) {
// For soft refs, it is up to the VM to decide when to reclaim this.
// If this is not an emergency collection, we have no heap stress. We simply retain soft refs.
if !mmtk.state.is_emergency_collection() {
// This step only retains the referents (keep the referents alive), it does not update its addresses.
// We will call soft.scan() again with retain=false to update its addresses based on liveness.
self.soft.retain::<E>(trace, is_nursery_gc(mmtk.get_plan()));
}
// This will update the references (and the referents).
self.soft.scan::<E>(trace, is_nursery_gc(mmtk.get_plan()));
}
/// Scan weak references.
pub fn scan_weak_refs<E: ProcessEdgesWork>(&self, trace: &mut E, mmtk: &'static MMTK<E::VM>) {
self.weak.scan::<E>(trace, is_nursery_gc(mmtk.get_plan()));
}
/// Scan phantom references.
pub fn scan_phantom_refs<E: ProcessEdgesWork>(
&self,
trace: &mut E,
mmtk: &'static MMTK<E::VM>,
) {
self.phantom
.scan::<E>(trace, is_nursery_gc(mmtk.get_plan()));
}
}
impl Default for ReferenceProcessors {
fn default() -> Self {
Self::new()
}
}
// XXX: We differ from the original implementation
// by ignoring "stress," i.e. where the array
// of references is grown by 1 each time. We
// can't do this here b/c std::vec::Vec doesn't
// allow us to customize its behaviour like that.
// (Similarly, GROWTH_FACTOR is locked at 2.0, but
// luckily this is also the value used by Java MMTk.)
const INITIAL_SIZE: usize = 256;
/// We create a reference processor for each semantics. Generally we expect these
/// to happen for each processor:
/// 1. The VM adds reference candidates. They could either do it when a weak reference
/// is created, or when a weak reference is traced during GC.
/// 2. We scan references after the GC determins liveness.
/// 3. We forward references if the GC needs forwarding after liveness.
/// 4. We inform the binding of references whose referents are cleared during this GC by enqueue'ing.
pub struct ReferenceProcessor {
/// Most of the reference processor is protected by a mutex.
sync: Mutex<ReferenceProcessorSync>,
/// The semantics for the reference processor
semantics: Semantics,
/// Is it allowed to add candidate to this reference processor? The value is true for most of the time,
/// but it is set to false once we finish forwarding references, at which point we do not expect to encounter
/// any 'new' reference in the same GC. This makes sure that no new entry will be added to our reference table once
/// we finish forwarding, as we will not be able to process the entry in that GC.
// This avoids an issue in the following scenario in mark compact:
// 1. First trace: add a candidate WR
// 2. Weak reference scan: scan the reference table, as MC does not forward object in the first trace. This scan does not update any reference.
// 3. Second trace: call add_candidate again with WR, but WR gets ignored as we already have WR in our reference table.
// 4. Weak reference forward: call trace_object for WR, which pushes WR to the node buffer and update WR -> WR' in our reference table.
// 5. When we trace objects in the node buffer, we will attempt to add WR as a candidate. As we have updated WR to WR' in our reference
// table, we would accept WR as a candidate. But we will not trace WR again, and WR will be invalid after this GC.
// This flag is set to false after Step 4, so in Step 5, we will ignore adding WR.
allow_new_candidate: AtomicBool,
}
#[derive(Debug, PartialEq)]
pub enum Semantics {
SOFT,
WEAK,
PHANTOM,
}
struct ReferenceProcessorSync {
/// The table of reference objects for the current semantics. We add references to this table by
/// add_candidate(). After scanning this table, a reference in the table should either
/// stay in the table (if the referent is alive) or go to enqueued_reference (if the referent is dead and cleared).
/// Note that this table should not have duplicate entries, otherwise we will scan the duplicates multiple times, and
/// that may lead to incorrect results.
references: HashSet<ObjectReference>,
/// References whose referents are cleared during this GC. We add references to this table during
/// scanning, and we pop from this table during the enqueue work at the end of GC.
enqueued_references: Vec<ObjectReference>,
/// Index into the references table for the start of nursery objects
nursery_index: usize,
}
impl ReferenceProcessor {
pub fn new(semantics: Semantics) -> Self {
ReferenceProcessor {
sync: Mutex::new(ReferenceProcessorSync {
references: HashSet::with_capacity(INITIAL_SIZE),
enqueued_references: vec![],
nursery_index: 0,
}),
semantics,
allow_new_candidate: AtomicBool::new(true),
}
}
/// Add a candidate.
pub fn add_candidate(&self, reff: ObjectReference) {
if !self.allow_new_candidate.load(Ordering::SeqCst) {
return;
}
let mut sync = self.sync.lock().unwrap();
sync.references.insert(reff);
}
fn disallow_new_candidate(&self) {
self.allow_new_candidate.store(false, Ordering::SeqCst);
}
fn allow_new_candidate(&self) {
self.allow_new_candidate.store(true, Ordering::SeqCst);
}
// These funcions simply call `trace_object()`, which does two things: 1. to make sure the object is kept alive
// and 2. to get the new object reference if the object is copied. The functions are intended to make the code
// easier to understand.
fn get_forwarded_referent<E: ProcessEdgesWork>(
e: &mut E,
referent: ObjectReference,
) -> ObjectReference {
e.trace_object(referent)
}
fn get_forwarded_reference<E: ProcessEdgesWork>(
e: &mut E,
object: ObjectReference,
) -> ObjectReference {
e.trace_object(object)
}
fn keep_referent_alive<E: ProcessEdgesWork>(
e: &mut E,
referent: ObjectReference,
) -> ObjectReference {
e.trace_object(referent)
}
/// Inform the binding to enqueue the weak references whose referents were cleared in this GC.
pub fn enqueue<VM: VMBinding>(&self, tls: VMWorkerThread) {
let mut sync = self.sync.lock().unwrap();
// This is the end of a GC. We do some assertions here to make sure our reference tables are correct.
#[cfg(debug_assertions)]
{
// For references in the table, the reference needs to be valid, and if the referent is not null, it should be valid as well
sync.references.iter().for_each(|reff| {
debug_assert!(!reff.is_null());
debug_assert!(reff.is_in_any_space());
let referent = VM::VMReferenceGlue::get_referent(*reff);
if !VM::VMReferenceGlue::is_referent_cleared(referent) {
debug_assert!(
referent.is_in_any_space(),
"Referent {:?} (of reference {:?}) is not in any space",
referent,
reff
);
}
});
// For references that will be enqueue'd, the referent needs to be valid, and the referent needs to be null.
sync.enqueued_references.iter().for_each(|reff| {
debug_assert!(!reff.is_null());
debug_assert!(reff.is_in_any_space());
let referent = VM::VMReferenceGlue::get_referent(*reff);
debug_assert!(VM::VMReferenceGlue::is_referent_cleared(referent));
});
}
if !sync.enqueued_references.is_empty() {
trace!("enqueue: {:?}", sync.enqueued_references);
VM::VMReferenceGlue::enqueue_references(&sync.enqueued_references, tls);
sync.enqueued_references.clear();
}
self.allow_new_candidate();
}
/// Forward the reference tables in the reference processor. This is only needed if a plan does not forward
/// objects in their first transitive closure.
/// nursery is not used for this.
pub fn forward<E: ProcessEdgesWork>(&self, trace: &mut E, _nursery: bool) {
let mut sync = self.sync.lock().unwrap();
debug!("Starting ReferenceProcessor.forward({:?})", self.semantics);
// Forward a single reference
fn forward_reference<E: ProcessEdgesWork>(
trace: &mut E,
reference: ObjectReference,
) -> ObjectReference {
let old_referent = <E::VM as VMBinding>::VMReferenceGlue::get_referent(reference);
let new_referent = ReferenceProcessor::get_forwarded_referent(trace, old_referent);
<E::VM as VMBinding>::VMReferenceGlue::set_referent(reference, new_referent);
let new_reference = ReferenceProcessor::get_forwarded_reference(trace, reference);
{
use crate::vm::ObjectModel;
trace!(
"Forwarding reference: {} (size: {})",
reference,
<E::VM as VMBinding>::VMObjectModel::get_current_size(reference)
);
trace!(
" referent: {} (forwarded to {})",
old_referent,
new_referent
);
trace!(" reference: forwarded to {}", new_reference);
}
debug_assert!(
!new_reference.is_null(),
"reference {:?}'s forwarding pointer is NULL",
reference
);
new_reference
}
sync.references = sync
.references
.iter()
.map(|reff| forward_reference::<E>(trace, *reff))
.collect();
sync.enqueued_references = sync
.enqueued_references
.iter()
.map(|reff| forward_reference::<E>(trace, *reff))
.collect();
debug!("Ending ReferenceProcessor.forward({:?})", self.semantics);
// We finish forwarding. No longer accept new candidates.
self.disallow_new_candidate();
}
/// Scan the reference table, and update each reference/referent.
// TODO: nursery is currently ignored. We used to use Vec for the reference table, and use an int
// to point to the reference that we last scanned. However, when we use HashSet for reference table,
// we can no longer do that.
fn scan<E: ProcessEdgesWork>(&self, trace: &mut E, _nursery: bool) {
let mut sync = self.sync.lock().unwrap();
debug!("Starting ReferenceProcessor.scan({:?})", self.semantics);
trace!(
"{:?} Reference table is {:?}",
self.semantics,
sync.references
);
debug_assert!(sync.enqueued_references.is_empty());
// Put enqueued reference in this vec
let mut enqueued_references = vec![];
// Determinine liveness for each reference and only keep the refs if `process_reference()` returns Some.
let new_set: HashSet<ObjectReference> = sync
.references
.iter()
.filter_map(|reff| self.process_reference(trace, *reff, &mut enqueued_references))
.collect();
debug!(
"{:?} reference table from {} to {} ({} enqueued)",
self.semantics,
sync.references.len(),
new_set.len(),
enqueued_references.len()
);
sync.references = new_set;
sync.enqueued_references = enqueued_references;
debug!("Ending ReferenceProcessor.scan({:?})", self.semantics);
}
/// Retain referent in the reference table. This method deals only with soft references.
/// It retains the referent if the reference is definitely reachable. This method does
/// not update reference or referent. So after this method, scan() should be used to update
/// the references/referents.
fn retain<E: ProcessEdgesWork>(&self, trace: &mut E, _nursery: bool) {
debug_assert!(self.semantics == Semantics::SOFT);
let sync = self.sync.lock().unwrap();
debug!("Starting ReferenceProcessor.retain({:?})", self.semantics);
trace!(
"{:?} Reference table is {:?}",
self.semantics,
sync.references
);
for reference in sync.references.iter() {
debug_assert!(!reference.is_null());
trace!("Processing reference: {:?}", reference);
if !reference.is_live() {
// Reference is currently unreachable but may get reachable by the
// following trace. We postpone the decision.
continue;
}
// Reference is definitely reachable. Retain the referent.
let referent = <E::VM as VMBinding>::VMReferenceGlue::get_referent(*reference);
if !<E::VM as VMBinding>::VMReferenceGlue::is_referent_cleared(referent) {
Self::keep_referent_alive(trace, referent);
}
trace!(" ~> {:?} (retained)", referent);
}
debug!("Ending ReferenceProcessor.retain({:?})", self.semantics);
}
/// Process a reference.
/// * If both the reference and the referent is alive, return the updated reference and update its referent properly.
/// * If the reference is alive, and the referent is not null but not alive, return None and the reference (with cleared referent) is enqueued.
/// * For other cases, return None.
///
/// If a None value is returned, the reference can be removed from the reference table. Otherwise, the updated reference should be kept
/// in the reference table.
fn process_reference<E: ProcessEdgesWork>(
&self,
trace: &mut E,
reference: ObjectReference,
enqueued_references: &mut Vec<ObjectReference>,
) -> Option<ObjectReference> {
debug_assert!(!reference.is_null());
trace!("Process reference: {}", reference);
// If the reference is dead, we're done with it. Let it (and
// possibly its referent) be garbage-collected.
if !reference.is_live() {
<E::VM as VMBinding>::VMReferenceGlue::clear_referent(reference);
trace!(" UNREACHABLE reference: {}", reference);
trace!(" (unreachable)");
return None;
}
// The reference object is live
let new_reference = Self::get_forwarded_reference(trace, reference);
let old_referent = <E::VM as VMBinding>::VMReferenceGlue::get_referent(reference);
trace!(" ~> {}", old_referent);
// If the application has cleared the referent the Java spec says
// this does not cause the Reference object to be enqueued. We
// simply allow the Reference object to fall out of our
// waiting list.
if <E::VM as VMBinding>::VMReferenceGlue::is_referent_cleared(old_referent) {
trace!(" (cleared referent) ");
return None;
}
trace!(" => {}", new_reference);
if old_referent.is_live() {
// Referent is still reachable in a way that is as strong as
// or stronger than the current reference level.
let new_referent = Self::get_forwarded_referent(trace, old_referent);
debug_assert!(new_referent.is_live());
trace!(" ~> {}", new_referent);
// The reference object stays on the waiting list, and the
// referent is untouched. The only thing we must do is
// ensure that the former addresses are updated with the
// new forwarding addresses in case the collector is a
// copying collector.
// Update the referent
<E::VM as VMBinding>::VMReferenceGlue::set_referent(new_reference, new_referent);
Some(new_reference)
} else {
// Referent is unreachable. Clear the referent and enqueue the reference object.
trace!(" UNREACHABLE referent: {}", old_referent);
<E::VM as VMBinding>::VMReferenceGlue::clear_referent(new_reference);
enqueued_references.push(new_reference);
None
}
}
}
use crate::scheduler::GCWork;
use crate::scheduler::GCWorker;
use crate::MMTK;
use std::marker::PhantomData;
#[derive(Default)]
pub(crate) struct SoftRefProcessing<E: ProcessEdgesWork>(PhantomData<E>);
impl<E: ProcessEdgesWork> GCWork<E::VM> for SoftRefProcessing<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
let mut w = E::new(vec![], false, mmtk, WorkBucketStage::SoftRefClosure);
w.set_worker(worker);
mmtk.reference_processors.scan_soft_refs(&mut w, mmtk);
w.flush();
}
}
impl<E: ProcessEdgesWork> SoftRefProcessing<E> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct WeakRefProcessing<E: ProcessEdgesWork>(PhantomData<E>);
impl<E: ProcessEdgesWork> GCWork<E::VM> for WeakRefProcessing<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
let mut w = E::new(vec![], false, mmtk, WorkBucketStage::WeakRefClosure);
w.set_worker(worker);
mmtk.reference_processors.scan_weak_refs(&mut w, mmtk);
w.flush();
}
}
impl<E: ProcessEdgesWork> WeakRefProcessing<E> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct PhantomRefProcessing<E: ProcessEdgesWork>(PhantomData<E>);
impl<E: ProcessEdgesWork> GCWork<E::VM> for PhantomRefProcessing<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
let mut w = E::new(vec![], false, mmtk, WorkBucketStage::PhantomRefClosure);
w.set_worker(worker);
mmtk.reference_processors.scan_phantom_refs(&mut w, mmtk);
w.flush();
}
}
impl<E: ProcessEdgesWork> PhantomRefProcessing<E> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct RefForwarding<E: ProcessEdgesWork>(PhantomData<E>);
impl<E: ProcessEdgesWork> GCWork<E::VM> for RefForwarding<E> {
fn do_work(&mut self, worker: &mut GCWorker<E::VM>, mmtk: &'static MMTK<E::VM>) {
let mut w = E::new(vec![], false, mmtk, WorkBucketStage::RefForwarding);
w.set_worker(worker);
mmtk.reference_processors.forward_refs(&mut w, mmtk);
w.flush();
}
}
impl<E: ProcessEdgesWork> RefForwarding<E> {
pub fn new() -> Self {
Self(PhantomData)
}
}
#[derive(Default)]
pub(crate) struct RefEnqueue<VM: VMBinding>(PhantomData<VM>);
impl<VM: VMBinding> GCWork<VM> for RefEnqueue<VM> {
fn do_work(&mut self, worker: &mut GCWorker<VM>, mmtk: &'static MMTK<VM>) {
mmtk.reference_processors.enqueue_refs::<VM>(worker.tls);
}
}
impl<VM: VMBinding> RefEnqueue<VM> {
pub fn new() -> Self {
Self(PhantomData)
}
}