-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathComputeCurvature.m
243 lines (219 loc) · 7.69 KB
/
ComputeCurvature.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function [k,nInfl,mci] = ComputeCurvature(xy, varargin)
%COMPUTECURVATURE - compute signed curvature of UTI contour
%
% usage: [k, NINFL, MCI] = ComputeCurvature(xy, ...)
%
% given contour XY [nPts x X,Y] this procedure computes its signed curvature K
% using a gradient method: (dx .* ddy - dy .* ddx) ./ (dx.^2 + dy.^2).^1.5
%
% specify nonzero CIRCLE parameter to compute curvature instead as the reciprocal
% of circle radii fit through successive point triplets
%
% truncates (and generates a warning for) any contours that "curl over"; i.e., for which x
% is non-monotonic and y is higher on the open end
%
% plots data and associated curvature if no output arguments requested
%
% optionally returns the Preston et al. (2019) NINFL measure (number of inflection points) from
% trimmed signed curvature (values whose associated radius is less than TRIM * path integral);
% an inflection point is counted if the trimmed curvature changes sign, and there is always at
% least one inflection point for non-collinear points
%
% optionally returns the Dawson et al. (2016) modified curvature index (MCI), the integral of
% the filtered (5-tap Butterworth) unsigned curvature
%
% optional supported 'NAME',VALUE parameter pairs (defaults in {}):
% CIRCLE - if nonzero compute curvature as the reciprocal of circle radi {0}
% NPTS - XY resampled to NPTS equally spaced points along its arc (0 disables; {100})
% FCLP - MCI low-pass filter cutoff (0 disables; {.25})
% TRIM - NINFL curvature trim factor (0 disables; {.3})
%
% examples
% compute curvature without resampling:
% k = ComputeCurvature(xy, 'NPTS',0);
%
% modify TRIM factor in computing NINFL
% [~,NINFL] = ComputeCurvature(xy, 'TRIM',.25)
%
% compute MCI using circle method
% [~,~,MCI] = ComputeCurvature(xy, 'CIRCLE',1);
%
% Dawson K, Tiede M & Whalen D. (2016). Methods for quantifying tongue shape and complexity using
% ultrasound imaging. Clinical Linguistics & Phonetics, 30(3-5), 328-344.
%
% Preston J, McCabe P, Tiede M & Whalen D. (2019). Tongue shapes for rhotics in school-age children
% with and without residual speech errors. Clinical Linguistics & Phonetics, 33(4), 334-348.
% specify nonzero NOISY for diagnostics
% mkt 06/15
% mkt 07/17 add mci
% mkt 05/18 add circle k, reorganize
% mkt 10/20 rationalize output plotting
% parse args
if nargin < 1, eval('help ComputeCurvature'); return; end;
[m,n] = size(xy);
if min([m,n]) > 2, error('expecting [nPts x X,Y] array for XY'); end;
if n > m, xy = xy'; end;
circle = 0;
FcLP = .25;
nPts = 100;
trim = .3;
noisy = 0;
for ai = 2 : 2 : length(varargin),
switch upper(varargin{ai-1}),
case 'CIRCLE', circle = varargin{ai};
case 'FCLP', FcLP = varargin{ai};
case 'NPTS', nPts = varargin{ai};
case 'TRIM', trim = varargin{ai};
case 'NOISY', noisy = varargin{ai};
otherwise, error('unrecognized parameter (%s)', varargin{ai-1});
end;
end;
% resample to nPts equally spaced points along arc unless NPTS==0
dist = [0 ; cumsum(sqrt(sum(diff(xy).^2,2)))];
if nPts > 0, xy = interp1(dist,xy,linspace(0,dist(end),nPts)','spline'); end;
if noisy, xy0 = xy; end;
% test for "curl over" non-monotonicity
q = find(sign(diff(xy(:,1))) < 1);
if length(q)+1 == size(xy,1), % all negative: flip curve to be left -> right
xy = flipud(xy);
q = find(sign(diff(xy(:,1))) < 1);
if noisy, fprintf('all negative (flipped)\n'); end;
end;
if ~isempty(q),
if length(q) > size(xy,1)/2, % more than half negative: flip curve to be left -> right
xy = flipud(xy);
q = find(sign(diff(xy(:,1))) < 1);
if noisy, fprintf('more than half negative (flipped)\n'); end;
elseif noisy,
fprintf('%d non-monotonic points detected\n', length(q));
end;
if q(1) == 1,
n = find(diff(q)>1);
if isempty(n), n = length(q); end;
if xy(1,2) < xy(q(end),2),
xy(q(1:n),:) = [];
fprintf('ComputeCurvature: %d leading non-monotonic overcurl points deleted\n', n);
q = find(sign(diff(xy(:,1))) < 1);
else,
q(1:n) = [];
if noisy, fprintf('%d leading non-monotonic points retained\n', n); end;
end;
end;
if ~isempty(q),
if xy(end,2) < xy(q(1),2) && xy(end,1) < xy(max(q),1),
xy(q(1):end,:) = [];
fprintf('ComputeCurvature: %d trailing non-monotonic overcurl points deleted\n', length(q));
elseif noisy,
fprintf('%d trailing non-monotonic points retained\n', length(q));
end;
end;
end;
% find signed curvature using circle radius method
if circle,
mag = @(v) (sqrt(sum(v.^2,2)));
V1 = [xy(1:end-2,:)-xy(3:end,:),zeros(size(xy,1)-2,1)];
V2 = [xy(2:end-1,:)-xy(3:end,:),zeros(size(xy,1)-2,1)];
V12 = cross(V1,V2);
k = 2 * V12(:,3) ./ (mag(V1) .* mag(V2) .* mag(V1-V2));
% find signed curvature using central differencing
else,
dx = gradient(xy(:,1)); dy = gradient(xy(:,2));
ddx = gradient(dx); ddy = gradient(dy);
k = (dx .* ddy - dy .* ddx) ./ (dx.^2 + dy.^2).^1.5;
end;
% trim curvature to values whose associated radius is less than TRIM * path integral from first to last point
fk = k;
if trim > 0,
q = sum(sqrt(sum(diff(xy).^2,2))) * trim;
fk(abs(1./k) > q) = 0;
end;
% count inflections (nonzero sign changes) plus one
sfk = sign(fk);
xfk = sfk(sfk ~= 0);
if isempty(xfk),
c = corrcoef(xy(:,1),xy(:,2));
c = 1 - c(2,1);
if c < .01, % correlation > .99
nInfl = 0; % collinear points
else,
nInfl = 1; % curvature below threshold
end;
else,
nInfl = sum(diff(xfk)~=0) + 1;
end;
% compute MCI (average of Simpson's Rule applied to intervals 1:N-1 plus trapezoid for final interval
% and 2:N plus trapezoid for first interval) on filtered curvature (kk)
n = length(k);
rk = flipud(k);
kk = [rk;k;rk]; % pad to avoid edge effects
if FcLP > 0,
[b,a] = butter(5,FcLP);
kk = filtfilt(b,a,kk);
end;
kk = kk(n+1:n*2); % filtered curvature
x = [0 ; cumsum(sqrt(sum(diff(xy).^2,2)))];
y = abs(kk);
if mod(n,2), % even number of intervals
mci = sr(x,y);
else, % odd number of intervals
z1 = sr(x(1:n-1),y(1:n-1)) + .5*diff(x(n-1:n))*sum(y(n-1:n));
z2 = sr(x(2:n),y(2:n)) + .5*diff(x(1:2))*sum(y(1:2));
mci = mean([z1,z2]);
end;
if nargout > 0, return; end;
% map inflection points to curvature for plotting
if nInfl < 2,
N = [];
else,
z = FindExtents(find(sfk == 0));
if sfk(z(1,1)) == 0,
sfk(z(1,1):z(1,2)) = sfk(z(1,2)+1);
z = FindExtents(find(sfk == 0));
end;
for zi = 1 : size(z,1),
sfk(z(zi,1):z(zi,2)) = sfk(z(zi,1)-1);
end;
N = find(diff(sfk))';
end;
% plot
figure;
subplot(211);
plot(xy(:,1),xy(:,2),'b-');
if ~isempty(N),
hold on;
plot(xy(N,1),xy(N,2),'ro'); hold on; plot(xy(N,1),xy(N,2),'g*');
end;
axis equal;
yl = get(gca,'ylim');
r = .05*diff(yl);
set(gca,'ydir','reverse','ylim',r*[-1 1]+yl);
title(inputname(1),'interpreter','none')
subplot(212);
h = plot([k,fk,abs(kk)]);
h(1).Color = 'b'; h(2).Color = 'r'; h(3).Color = [0 .7 0];
set(gca,'xlim',[1 length(k)]);
if ~isempty(N),
line([N;N], get(gca,'ylim'), 'color','g', 'linewidth',2);
end;
line([1 length(k)],[0 0],'color',[.7 .7 .7],'linestyle',':');
title(sprintf('# inflections: %d MCI = %.2f', nInfl, mci));
legend(h,'Curvature (K)','Trimmed K','Filtered abs(K)');
clear k
%===================================================================================================
% FINDEXTENTS - find continguous extents of an indexed signal
function idx = FindExtents(v)
idx = find(diff([-1;v]) > 1);
len = diff([idx;length(v)+1]);
idx = [v(idx) , v(idx)+len-1]; % [nExtents x head,tail]
%===================================================================================================
% SR - integrate using quadratic interpolation (Simpson's Rule)
function z = sr(x,y)
n = length(y);
dx = diff(x);
dx1 = dx(1:end-1);
dx2 = dx(2:end);
alpha = (dx1+dx2)./dx1/6;
a0 = alpha.*(2*dx1-dx2);
a1 = alpha.*(dx1+dx2).^2./dx2;
a2 = alpha.*dx1./dx2.*(2*dx2-dx1);
z = sum(a0(1:2:end).*y(1:2:n-2) + a1(1:2:end).*y(2:2:n-1) + a2(1:2:end).*y(3:2:n),1);