-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid.py
165 lines (118 loc) · 5.12 KB
/
grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import division
from Queue import PriorityQueue
from utils import HopliteError
import random
import logging
logger = logging.getLogger(__name__)
class NoPathExistsError(HopliteError):
pass
class NotFoundError(HopliteError):
pass
DIRECTIONS = [(0, -1), (-1, 0), (-1, 1), (0, 1), (1, 0), (1, -1)]
VALID_CELLS = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, -1), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, -2),
(2, -1), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (3, -3), (3, -2), (3, -1), (3, 0), (3, 1), (3, 2),
(3, 3), (3, 4), (4, -4), (4, -3), (4, -2), (4, -1), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, -4),
(5, -3), (5, -2), (5, -1), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (6, -4),
(6, -3), (6, -2), (6, -1), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (7, -4), (7, -3), (7, -2), (7, -1),
(7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (8, -4), (8, -3), (8, -2), (8, -1), (8, 0), (8, 1), (8, 2),
(8, 3), (9, -4), (9, -3), (9, -2), (9, -1), (9, 0), (9, 1), (9, 2), (10, -4), (10, -3), (10, -2),
(10, -1), (10, 0), (10, 1), (11, -4), (11, -3), (11, -2), (11, -1), (11, 0)]
def arc(origin, direction, depth):
"""A set of cells extending from three neighbors of the start cell."""
results = set()
index = DIRECTIONS.index(direction)
for i in range(1, depth+1):
for j in range(index - 1, index + 2):
angle = DIRECTIONS[j % 6]
vector = mult(angle, i)
target = add(origin, vector)
if isValid(target):
results.add(target)
return results
def burst(cell, distance=1):
"""The set of cells within :distance: distance of :cell:"""
results = set((cell,))
for i in range(0, distance):
results = reduce(lambda r, cell: r | neighbors(cell), results, results)
return results
def cells_in_polygon(*corners):
"""Given a set of corners, determine all the cells partially or completely enclosed within that polygon"""
raise NotImplementedError
def cone(origin, left, right, depth):
"""Set of cells extending depth from origin bounded by left and right as viewed from origin"""
raise NotImplementedError
def diagonals(cell):
"""Determine the valid cells that are located diagonally from the cell provided."""
offsets = [(-2, 1), (-1, 2), (1, 1), (2, -1), (1, -2), (-1, -1)]
cL, cR = cell
return set(filter(isValid, [(cL + oL, cR + oR) for (oL, oR) in offsets]))
def distance(start, end):
"""Minimum number of cells crossed to get from :start: to :end:"""
a = to_cubic(start)
b = to_cubic(end)
return (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2])) / 2
def find(grid, obj):
"""Locate the given obj in a grid"""
for pos, item in self.cells.items():
if item == obj or obj in item:
return pos
raise NotFoundError
def find_path(grid, start, goals):
"""Find the shortest possible path across :grid: from :start: to a cell in :goals:"""
if not isinstance(list(goals)[0], tuple):
goals = [goals]
frontier = PriorityQueue()
frontier.put((0, [start]))
cost_so_far = {start: 0}
while not frontier.empty():
cost, path = frontier.get()
current = path[-1]
if current in goals:
return path
for next in sorted(neighbors(current), key=lambda k: random.random()):
new_cost = cost + float("inf") if next in grid else 1
if new_cost < cost_so_far.get(next, float("inf")):
cost_so_far[next] = new_cost
priority = new_cost + \
min(map(lambda x: distance(next, x), goals))
frontier.put((priority, path + [next]))
raise NoPathExistsError()
def isValid(cell):
"""Determine if a cell is on the standard sized grid I'm using."""
L, R = cell
if abs(R) <= 4 and \
0 <= R + L <= 11 and \
0 <= L <= 11:
return True
return False
def line(cell, direction, distance=1):
results = set()
L, R = cell
dL, dR = direction
for d in range(0, distance + 1):
if isValid((L + dL * d, R + dR * d)):
results.add((L + dL * d, R + dR * d))
return results
def lines(cell, distance=1):
results = set()
for direction in DIRECTIONS:
results = results | line(cell, direction, distance)
return results
def neighbors(cell):
"""Determine the valid cells that are next to the cell provided."""
cL, cR = cell
return set(filter(isValid, [(cL + oL, cR + oR) for (oL, oR) in DIRECTIONS]))
def to_cubic(cell):
q, r = cell
return (q, -q - r, r)
def unit_vector(src, dest):
"""Normalize the distance between two cells, such that the longest either direction is one."""
sL, sR = src
dL, dR = dest
denominator = max(abs(dL - sL), abs(dR - sR))
return (int((dL - sL) / denominator) if denominator != 0 else 0,
int((dR - sR) / denominator) if denominator != 0 else 0)
def add(start, vector):
return (start[0] + vector[0], start[1] + vector[1])
def mult(vector, scalar):
return (vector[0] * scalar, vector[1] * scalar)