-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_script_video_training.py
executable file
·336 lines (280 loc) · 17.4 KB
/
train_script_video_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import time
import os
import random
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.utils.data.distributed
import cv2
import numpy as np
from tensorboardX import SummaryWriter
from dataset.youtube_scribble import YtbScribble_MO_Train
from dataset.davis_scribble import DAVISScribble_MO_Train
from dataset.seq_sampler import SeqSampler
from model import build_model
import configs.default as default_config
from utils import ScribbleLoss, SmoothnessLoss
from utils.train_utils import reduce_mean, update_stats, print_stats, write_tb
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank',default=-1,type=int,help='node rank for distributed training')
parser.add_argument('--config',default='demo',type=str,help='config file for training')
parser.add_argument('-p','--print-freq',default=50,type=int,metavar='N',help='print frequency (default: 10)')
parser.add_argument('--resume',default=None, help='resume training from a pretrained model')
def init_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
cudnn.deterministic=True
cudnn.benchmark=False
def adjust_learning_rate(init_lr, iteration, total_iteration, power = 0.9):
lr = init_lr * pow((1 - 1.0 * iteration / total_iteration), power)
return lr
def main():
torch.autograd.set_detect_anomaly(True)
args = parser.parse_args()
args.save = './checkpoints/pretrain_weights_{}'.format(args.config)
cfg = default_config.cfg
default_config.update_config_from_file('./experiments/{:s}.yaml'.format(args.config))
print(cfg)
if not os.path.exists('./logs'):
os.makedirs('./logs')
args.nprocs = torch.cuda.device_count()
main_worker(args.local_rank, args.nprocs, args, cfg)
def main_worker(local_rank, nprocs, args, cfg, base_seed=42):
dist.init_process_group(backend='nccl')
init_seeds(base_seed + local_rank)
'''creat model'''
model = build_model(cfg)
if cfg.RESUME is not None:
checkpoint = torch.load(cfg.RESUME, map_location='cpu')
print("load from {}".format(cfg.RESUME))
model.load_state_dict(checkpoint['state_dict'])
start_epoch = 0
print("start epoch: {}".format(start_epoch))
torch.cuda.set_device(local_rank)
model.cuda(local_rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True) # TODO: 会报错,暂时设置find_unused_parameters=True
'''loss, optimizer and scheduler'''
pce_weight = torch.ones(12)
pce_weight[0] = 0 # 0 for unlabeld region
pce_weight[-1] = cfg.TRAIN.LOSS.MASK.BG_WEIGHT
mask_loss = nn.CrossEntropyLoss(weight=pce_weight, reduction='mean').cuda(local_rank)
smooth_loss = SmoothnessLoss(with_scribble=cfg.TRAIN.LOSS.SMOOTH.WITH_SCRIBBLE,
alpha=cfg.TRAIN.LOSS.SMOOTH.ALPHA)
consistency_loss = nn.MSELoss(reduction='mean').cuda(local_rank)
scribble_loss = ScribbleLoss(use_focal_loss=cfg.TRAIN.LOSS.SCRIBBLE_LOSS.USE_FOCAL_LOSS,
alpha=cfg.TRAIN.LOSS.SCRIBBLE_LOSS.ALPHA)
criterions = [mask_loss, smooth_loss, consistency_loss, scribble_loss]
# optimizer and scheduler
param_dicts = [{"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
{"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
"lr": cfg.TRAIN.LR * cfg.TRAIN.BACKBONE_MULTIPLIER,}]
if cfg.TRAIN.OPTIMIZER == 'AdamW':
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.TRAIN.LR,
weight_decay=cfg.TRAIN.WEIGHT_DECAY)
elif cfg.TRAIN.OPTIMIZER == 'Adam':
optimizer = torch.optim.Adam(param_dicts, lr = cfg.TRAIN.LR, eps=1e-8, betas=[0.9,0.999])
else:
raise ValueError("Unsupported Optimizer")
'''data loading'''
ytb_dataset = YtbScribble_MO_Train(root=cfg.DATASETS.YTB.ROOT,
max_object_num=cfg.DATASETS.MAX_OBJECT_NUM,
clip_length=cfg.DATASETS.YTB.CLIP_LENGTH,
crop_size=cfg.DATASETS.CROP_SIZE,
random_flip=cfg.DATASETS.YTB.RANDOM_FLIP,
minimum_area=cfg.DATASETS.MINIMUM_AREA,
init_skip=cfg.TRAIN.INIT_SKIP,
bidirection=cfg.DATASETS.BIDIRECTION,
dilate_kernel_size=cfg.DATASETS.DILATE_KERNEL_SIZE)
davis_dataset = DAVISScribble_MO_Train(root=cfg.DATASETS.DAVIS.PATH,
max_object_num=cfg.DATASETS.MAX_OBJECT_NUM,
clip_length=cfg.DATASETS.DAVIS.CLIP_LENGTH,
crop_size=cfg.DATASETS.CROP_SIZE,
random_flip=cfg.DATASETS.DAVIS.RANDOM_FLIP,
minimum_area=cfg.DATASETS.MINIMUM_AREA,
init_skip=cfg.TRAIN.INIT_SKIP,
bidirection=cfg.DATASETS.BIDIRECTION,
dilate_kernel_size=cfg.DATASETS.DILATE_KERNEL_SIZE)
train_dataset = SeqSampler(datasets=[ytb_dataset, davis_dataset],
p_datasets=cfg.DATASETS.SAMPLE_PROBABILITY,
samples_per_epoch=cfg.TRAIN.SAMPLES_PER_EPOCH,
init_skip=cfg.TRAIN.INIT_SKIP,
temporal_flip=cfg.DATASETS.VIDEO_TEMPORAL_FLIP)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=cfg.TRAIN.BATCH_SIZE,
num_workers=8, pin_memory=True, sampler=train_sampler, drop_last=True)
'''tensorboard'''
if args.local_rank == 0:
writer = SummaryWriter('tensorboard/' + args.config)
else:
writer=None
'''training'''
for epoch in range(start_epoch, cfg.TRAIN.EPOCH):
train_sampler.set_epoch(epoch)
train(train_loader, model, criterions, optimizer, epoch, local_rank, args, cfg, writer)
if args.local_rank == 0:
save_checkpoint({
'epoch': epoch+1,
'state_dict': model.module.state_dict(),
}, args)
def train(train_loader, model, criterions, optimizer, epoch, local_rank, args, cfg, writer):
train_stats = OrderedDict()
mask_loss_func, smooth_loss_func, consistency_loss_func, scribble_loss_func = criterions
model.train()
start_time = time.time()
all_frames = 0
for i, (Fs, Gs, Init_Scr, Ms, Ds_Ms, Ignore_R, num_objects, info) in enumerate(train_loader):
prev_time = time.time()
all_frames += Fs.shape[0]
iter_number = epoch*(len(train_loader)) + i
# update lr
if (iter_number+1) % cfg.TRAIN.LR_DECREASE_STEP == 0:
lr = adjust_learning_rate(cfg.TRAIN.LR, iter_number+1, cfg.TRAIN.EPOCH*len(train_loader))
optimizer.param_groups[0]["lr"] = lr
optimizer.param_groups[1]["lr"] = lr * cfg.TRAIN.BACKBONE_MULTIPLIER
if local_rank == 0:
writer.add_scalars('LR', {'LR': lr}, iter_number+1)
print('********** drop lr to {}. **********'.format(lr))
# change skip
if (iter_number+1) % cfg.TRAIN.SKIP_INCREASE_STEP == 0:
curr_skip = train_loader.dataset.skip
if curr_skip < cfg.TRAIN.MAX_SKIP:
train_loader.dataset.change_skip(curr_skip+1)
print('********** change skip gap to {}. **********'.format(curr_skip+1))
Fs = Fs.cuda(local_rank, non_blocking=True) # [B, clip_length, 3, H, W]
Gs = Gs.cuda(local_rank, non_blocking=True) # [B, clip_length, H, W]
Init_Scr = Init_Scr.cuda(local_rank, non_blocking=True) # [B, clip_length, K, H, W]
Ms = Ms.cuda(local_rank, non_blocking=True) # [B, clip_length, 12, H, W], self.K=12
Ds_Ms = Ds_Ms.cuda(local_rank, non_blocking=True) # [B, clip_length, K, H//4, W//4], self.K=12
Ignore_R = Ignore_R.cuda(local_rank, non_blocking=True) # [B, clip_length, K, H//4, W//4], self.K=12
num_objects = num_objects.cuda(local_rank, non_blocking=True) # [B]
no = num_objects.max()
B, _, K, im_h, im_w = Ms.shape
ds_h, ds_w = Ds_Ms.shape[-2:]
seq_name = info['name']
num_frames = info['num_frames'][0].item()
# forward prediction
multi_pred_prob_list, multi_pred_logit_list, binary_pred_prob_list, binary_edge_logit_list, valid, \
multi_scribble_prob_list, binary_scribble_logit_list = model(images=Fs, init_scribble=Init_Scr[:,0,...], num_objects=num_objects)
pred_h, pred_w = multi_pred_prob_list[0][0].shape[-2:]
# backward prediction
Fs_inverse = Fs.flip(dims=(1,))
Gs_inverse = Gs.flip(dims=(1,))
Ms_inverse = Ms.flip(dims=(1,))
with torch.no_grad():
multi_pred_prob_list_inverse, multi_pred_logit_list_inverse, binary_pred_prob_list_inverse, binary_edge_logit_list_inverse, _, _, _ = \
model(images=Fs_inverse, init_scribble=Init_Scr[:,-1,...], num_objects=num_objects)
multi_pred_prob_list_backward = multi_pred_prob_list_inverse[::-1]
multi_pred_logit_list_backward = multi_pred_logit_list_inverse[::-1]
status = {}
all_us_multi_logits = [] # list of [batch*clip_length, self.K, H, W]
mask_label = Ms.reshape(-1, K, im_h, im_w).argmax(dim=1).long() # [B*clip_length, im_h, im_w]
pce_losses = torch.zeros([]).to(Ms.device)
smooth_losses = torch.zeros([]).to(Ms.device)
for layer, multi_pred_logits in enumerate(zip(*multi_pred_logit_list)):
#[batch, clip_length, self.K, H, W] --> #[batch*clip_length, self.K, H, W]
multi_logits = torch.stack(multi_pred_logits, dim=1).reshape(-1, K, pred_h, pred_w)
if cfg.MODEL.DECODER.UPSAMPLE_LOGITS:
us_multi_logits = multi_logits
else:
us_multi_logits = F.interpolate(multi_logits, size=(im_h, im_w), mode='bilinear', align_corners=True)
all_us_multi_logits.append(us_multi_logits)
pce_loss = mask_loss_func(us_multi_logits.permute(0,2,3,1).reshape(-1, K), mask_label.reshape(-1))
pce_losses += pce_loss
status["pce_loss_layer{:d}".format(layer)] = pce_loss.item()
if cfg.TRAIN.LOSS.SMOOTH.WEIGHT != 0:
smooth_loss = smooth_loss_func(torch.softmax(us_multi_logits, dim=1), Gs.reshape(-1, im_h, im_w), mask_label)
smooth_losses += smooth_loss
status["smooth_loss_layer{:d}".format(layer)] = smooth_loss.item()
if cfg.TRAIN.LOSS.CONSISTENCY.WEIGHT != 0:
multi_probs_list = [torch.stack(multi_pred_probs, dim=1).reshape(-1, K, pred_h, pred_w) for multi_pred_probs in zip(*multi_pred_prob_list)]
multi_probs_list_bw = [torch.stack(multi_pred_probs_bw, dim=1).reshape(-1, K, pred_h, pred_w) for multi_pred_probs_bw in zip(*multi_pred_prob_list_backward)]
consistency_losses = torch.zeros([]).to(Ms.device)
for layer in range(len(multi_probs_list)):
consistency_loss = consistency_loss_func(multi_probs_list[layer], multi_probs_list_bw[layer])
consistency_losses += consistency_loss
status["consistency_loss_layer{:d}".format(layer)] = consistency_loss.item()
if cfg.TRAIN.LOSS.SCRIBBLE_LOSS.WEIGHT != 0:
# (B, no) --> (clip_length, B, no, 1, 1)
valid_weights = valid.unsqueeze(0).repeat(num_frames, 1, 1).unsqueeze(-1).unsqueeze(-1).cuda(local_rank, non_blocking=True)
# (B, clip_length, K, H//4, W//4) --> (clip_length, B, no, H//4, W//4)
valid_regions = ((1 - Ignore_R).permute(1, 0, 2, 3, 4)[:, :, 1:no+1, :, :] * valid_weights).reshape(-1)
scribble_labels = Ds_Ms.permute(1, 0, 2, 3, 4)[:, :, 1:no+1, :, :].reshape(-1)
pred_scribble_logits = torch.stack(binary_scribble_logit_list, dim=0).reshape(-1)
scribble_loss = scribble_loss_func(pred_scribble_logits, scribble_labels, valid_regions)
status['scribble_loss'] = scribble_loss.item()
total_losses = cfg.TRAIN.LOSS.MASK.WEIGHT * pce_losses
if cfg.TRAIN.LOSS.SMOOTH.WEIGHT != 0:
total_losses += cfg.TRAIN.LOSS.SMOOTH.WEIGHT * smooth_losses
if cfg.TRAIN.LOSS.CONSISTENCY.WEIGHT != 0:
total_losses += cfg.TRAIN.LOSS.CONSISTENCY.WEIGHT * consistency_losses
if cfg.TRAIN.LOSS.SCRIBBLE_LOSS.WEIGHT != 0:
total_losses += cfg.TRAIN.LOSS.SCRIBBLE_LOSS.WEIGHT * scribble_loss
status['total_loss'] = total_losses.item()
torch.distributed.barrier()
train_stats = update_stats(old_stats=train_stats, new_stats=status, batch_size=B)
optimizer.zero_grad()
total_losses.backward()
optimizer.step()
# write tensorboard
if i % args.print_freq == 0:
if args.local_rank == 0:
print_stats(epoch, i, train_loader, [start_time, prev_time], B, all_frames, train_stats, './logs/train_{:s}_log.txt'.format(args.config))
train_stats = write_tb(writer, train_stats, iter_number)
# visualize
if args.local_rank == 0:
layer_nums = len(all_us_multi_logits)
all_us_multi_logits = torch.stack(all_us_multi_logits, dim=0) # [layer, B*L, K, H, W]
mean = torch.tensor([0.485, 0.456, 0.406]).reshape(1,1,3,1,1).cuda(local_rank)
std = torch.tensor([0.229, 0.224, 0.225]).reshape(1,1,3,1,1).cuda(local_rank)
colors = np.array([[0, 0, 255],[0, 255, 0],[0, 255, 255],[255, 0, 0],[255, 0, 255]])
unnormed_Fs = Fs * std + mean # [B, L, 3, H, W]
np_images = (unnormed_Fs.permute(0,1,3,4,2).cpu().numpy()*255.).astype(np.uint8) # [B, L, H, W, 3]
np_labels = np.argmax(Ms.cpu().numpy(), axis=2).astype(np.uint8) # [B, L, H, W]
# input # [B, H, W, 3]
init_image, init_label = np_images[:, 0].copy(), np_labels[:, 0].copy()
for o in range(cfg.DATASETS.MAX_OBJECT_NUM):
init_image_ = init_image * 0.4 + np.ones(init_image.shape) * 0.6 * colors[o]
init_image[init_label == o+1] = init_image_[init_label == o+1]
init_image[init_label == 11] = 255
init_image = init_image.reshape(-1, *init_image.shape[2:]) # [B*H, W, 3]
for idx, name in enumerate(seq_name):
cv2.putText(init_image, name, (0, idx*im_h+30), cv2.FONT_HERSHEY_COMPLEX, 0.75, (0,255,255), 1)
# pred
masks = torch.argmax(F.softmax(all_us_multi_logits, dim=2), dim=2).cpu().numpy().reshape(layer_nums, *np_images.shape[:-1]) # [layer, B, L, H, W]
for layer in range(layer_nums):
images = np_images.copy() # [B, L, H, W, 3]
for o in range(cfg.DATASETS.MAX_OBJECT_NUM):
images_ = images * 0.4 + np.ones(images.shape) * 0.6 * colors[o]
images[masks[layer] == o+1] = images_[masks[layer] == o+1]
images = images.transpose([0, 2, 1, 3, 4]) # [B, H, L, W, 3]
images = images.reshape(images.shape[0]* images.shape[1], images.shape[2]*images.shape[3], -1) # [B*H, L*W, 3]
vis = np.concatenate([init_image, images], axis=1) # [B*H, (L+1)*W, 3]
writer.add_image('layer_{}'.format(layer+1), vis, iter_number, dataformats='HWC')
scribble_images = np_images.copy() #[B, L, H, W, 3]
multi_scribble_probs = torch.stack(multi_scribble_prob_list, dim=1).reshape(-1, K, ds_h, ds_w)#(B*L, K, H, W)
us_multi_scribble_probs = F.interpolate(multi_scribble_probs, size=(im_h, im_w), mode='bilinear', align_corners=True)
scribbles = torch.argmax(us_multi_scribble_probs, dim=1).cpu().numpy().reshape(*np_images.shape[:-1])# [B, L, H, W]
for o in range(cfg.DATASETS.MAX_OBJECT_NUM):
scribble_images_ = scribble_images * 0.4 + + np.ones(scribble_images.shape) * 0.6 * colors[o]
scribble_images[scribbles == o+1] = scribble_images_[scribbles == o+1]
scribble_images = scribble_images.transpose([0, 2, 1, 3, 4])# [B, H, L, W, 3]
scribble_images = scribble_images.reshape(scribble_images.shape[0]* scribble_images.shape[1], scribble_images.shape[2]*scribble_images.shape[3], -1) # [B*H, L*W, 3]
scribble_vis = np.concatenate([init_image, scribble_images], axis=1) # [B*H, (L+1)*W, 3]
writer.add_image('scribble', scribble_vis, iter_number, dataformats='HWC')
def save_checkpoint(state, args):
save_dir = args.save
if not os.path.exists(save_dir):
os.makedirs(save_dir)
filename = os.path.join(save_dir, 'pretrain_checkpoint_{}.pth.tar'.format(state['epoch']))
torch.save(state, filename)
if __name__ =='__main__':
main()