-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_davis.py
executable file
·250 lines (223 loc) · 11.9 KB
/
eval_davis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import cv2
import numpy as np
import time
import tqdm
import os
import argparse
import sys
from dataset.davis_eval import DAVIS_MO_Test
from model import build_model, build_tracker
import configs.default as default_config
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from evaldavis2017.davis2017.davis import DAVIS
from evaldavis2017.davis2017.metrics import db_eval_boundary, db_eval_iou
from evaldavis2017.davis2017 import utils
from evaldavis2017.davis2017.results import Results
import skimage.morphology as sm
from scipy.ndimage.morphology import binary_erosion, binary_dilation
colors = np.array([[255, 0, 0],[0, 255, 0],[0, 0, 255],[255, 255, 0],[255, 0, 255]])
def denormalize(images):
"""
images (Tensor) - (B, C, H, W)
"""
mean = torch.tensor([0.485, 0.456, 0.406]).reshape(1,3,1,1)
std = torch.tensor([0.229, 0.224, 0.225]).reshape(1,3,1,1)
return images * std + mean
def Run_video(dataset, video, num_frames, num_objects, tracker):
save_dir = os.path.join(args.save_root_path, video)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
F, M, num_objects = dataset.load_single_image(video, 0)
# save init scribble
'''
init_image = (denormalize(F).cpu().permute(0,2,3,1).numpy() * 255.0).astype(np.uint8).squeeze(0)
init_scribbles = M.squeeze().detach().cpu().numpy()
for o in range(num_objects):
init_image[init_scribbles[o+1] == 1] = colors[o]
cv2.imwrite(os.path.join(save_dir, "init_scribble.jpg"), np.flip(init_image, axis=-1))
'''
tracker.initialize(F.cuda(), M.cuda(), num_objects)
pred_prob, pred_scribble_prob, scores = tracker.track(F.cuda(), num_objects, frame_num=0)
pred = np.zeros((num_frames, M.shape[-2], M.shape[-1]))
scribble = np.zeros((num_frames, M.shape[-2], M.shape[-1]))
all_Ms = []
fpss = []
for t in range(1, num_frames):
start = time.time()
F_, M_, num_objects = dataset.load_single_image(video, t)
# the predicted mask
pred_prob, pred_scribble_prob, scores = tracker.track(F_.cuda(), num_objects, frame_num=t)
all_Ms.append(M_.cpu().numpy())
pred[t] = torch.argmax(pred_prob[0], dim=0).cpu().numpy().astype(np.uint8)
fpss.append(1/(time.time()-start))
# the predicted scribble
pred_scribble = torch.zeros_like(pred_scribble_prob[0])
for i in range(1, 1+num_objects[0]):
pred_scribble[i] = (pred_scribble_prob[0, i] >= 0.5).to(torch.int) * (pred_scribble_prob[0, i] >= 0.5).to(torch.int)
pred_scribble[-1] = 1 - pred_scribble.sum(dim=0)
for i in range(12):
pred_scribble[i] = pred_scribble[i] * i
scribble[t] = torch.argmax(pred_scribble, dim=0).cpu().numpy().astype(np.uint8)
'''
vis_image = (denormalize(F_).cpu().permute(0,2,3,1).numpy() * 255.0).astype(np.uint8).squeeze(0) # w, h, 3
vis_mask = pred[t] # w, h
for o in range(num_objects):
binary_mask = vis_mask == o+1
# _palette = Image.open('/datasets/DAVIS/00000.png').getpalette()
# save = binary_mask.astype(np.uint8)
# save[save == 1] = 2
# save = Image.fromarray(save).convert('P')
# save.putpalette(_palette)
# save.save(os.path.join(save_dir, "{:0>5d}_mask.png".format(t)))
vis_image_ = vis_image * 0.4 + np.ones(vis_image.shape) * 0.6 * colors[o]
vis_image[binary_mask] = vis_image_[binary_mask]
contours = binary_dilation(binary_mask, sm.square(5)) ^ binary_mask
vis_image[contours] = 255
cv2.imwrite(os.path.join(save_dir, "{:0>5d}.jpg".format(t)), np.flip(vis_image, axis=-1))
scribble_vis_image = (denormalize(F_).cpu().permute(0,2,3,1).numpy() * 255.0).astype(np.uint8).squeeze(0) # w, h, 3
vis_scribble = scribble[t]
for o in range(num_objects):
# _palette = Image.open('/datasets/DAVIS/00000.png').getpalette()
# save = (vis_scribble == o+1).astype(np.uint8)
# save[save == 1] = 2
# save = Image.fromarray(save).convert('P')
# save.putpalette(_palette)
# save.save(os.path.join(save_dir, "{:0>5d}_scribble.png".format(t)))
scribble_vis_image_ = scribble_vis_image * 0.4 + np.ones(scribble_vis_image.shape) * 0.6 * colors[o]
scribble_vis_image[vis_scribble == o+1] = scribble_vis_image_[vis_scribble == o+1]
cv2.imwrite(os.path.join(save_dir, "scribble_{:0>5d}.jpg".format(t)), np.flip(scribble_vis_image, axis=-1))
'''
Ms = np.stack(all_Ms, axis=2)
return pred, Ms
def evaluate_semisupervised(all_gt_masks, all_res_masks, all_void_masks, metric):
if all_res_masks.shape[0] > all_gt_masks.shape[0]:
sys.stdout.write("\nIn your PNG files there is an index higher than the number of objects in the sequence!")
sys.exit()
elif all_res_masks.shape[0] < all_gt_masks.shape[0]:
zero_padding = np.zeros((all_gt_masks.shape[0] - all_res_masks.shape[0], *all_res_masks.shape[1:]))
all_res_masks = np.concatenate([all_res_masks, zero_padding], axis=0)
j_metrics_res, f_metrics_res = np.zeros(all_gt_masks.shape[:2]), np.zeros(all_gt_masks.shape[:2])
for ii in range(all_gt_masks.shape[0]):
if 'J' in metric:
j_metrics_res[ii, :] = db_eval_iou(all_gt_masks[ii, ...], all_res_masks[ii, ...], all_void_masks)
if 'F' in metric:
f_metrics_res[ii, :] = db_eval_boundary(all_gt_masks[ii, ...], all_res_masks[ii, ...], all_void_masks)
return j_metrics_res, f_metrics_res
def evaluate(model, Testloader, metric, video_name=None):
# Containers
metrics_res = {}
if 'J' in metric:
metrics_res['J'] = {"M": [], "R": [], "D": [], "M_per_object": {}}
if 'F' in metric:
metrics_res['F'] = {"M": [], "R": [], "D": [], "M_per_object": {}}
for V in tqdm.tqdm(Testloader):
num_objects, info = V
seq_name = info['name']
num_frames = info['num_frames']
if video_name is not None:
if seq_name == video_name:
pred, Ms = Run_video(Testloader, seq_name, num_frames, num_objects, model)
return None
else:
continue
pred, Ms = Run_video(Testloader, seq_name, num_frames, num_objects, model)
# all_res_masks = Es[0].cpu().numpy()[1:1+num_objects]
all_res_masks = np.zeros((num_objects, pred.shape[0], pred.shape[1], pred.shape[2]))
for i in range(1,num_objects+1):
all_res_masks[i-1,:,:,:] = (pred == i).astype(np.uint8)
all_res_masks = all_res_masks[:, 1:-1, :, :]
all_gt_masks = Ms[0][1:1+num_objects]
all_gt_masks = all_gt_masks[:, :-1, :, :]
j_metrics_res, f_metrics_res = evaluate_semisupervised(all_gt_masks, all_res_masks, None, metric)
for ii in range(all_gt_masks.shape[0]):
if 'J' in metric:
[JM, JR, JD] = utils.db_statistics(j_metrics_res[ii])
metrics_res['J']["M"].append(JM)
metrics_res['J']["R"].append(JR)
metrics_res['J']["D"].append(JD)
if 'F' in metric:
[FM, FR, FD] = utils.db_statistics(f_metrics_res[ii])
metrics_res['F']["M"].append(FM)
metrics_res['F']["R"].append(FR)
metrics_res['F']["D"].append(FD)
J, F = metrics_res['J'], metrics_res['F']
g_measures = ['J&F-Mean', 'J-Mean', 'J-Recall', 'J-Decay', 'F-Mean', 'F-Recall', 'F-Decay']
final_mean = (np.mean(J["M"]) + np.mean(F["M"])) / 2.
g_res = np.array([final_mean, np.mean(J["M"]), np.mean(J["R"]), np.mean(J["D"]), np.mean(F["M"]), np.mean(F["R"]),
np.mean(F["D"])])
return g_res, g_measures
def test(Testloaders, metric, epoch, args, cfg):
g_res_list, g_measures_list = [], []
for scribble_group_id, Testloader in enumerate(Testloaders):
args.save_root_path = os.path.join(args.save_path, '{:s}_{:d}_davis_g{}'.format(args.config, epoch, scribble_group_id))
checkpoint_path = './checkpoints/pretrain_weights_{:s}/pretrain_checkpoint_{:d}.pth.tar'.format(args.config, epoch)
model = build_model(cfg)
if torch.cuda.is_available():
model.cuda()
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
tracker = build_tracker(cfg, model)
g_res, g_measures = evaluate(tracker, Testloader, metric, args.video_name)
g_res_list.append(g_res)
g_measures_list.append(g_measures)
return g_res_list, g_measures_list
if __name__ == "__main__":
torch.set_grad_enabled(False) # Volatile
def get_arguments():
parser = argparse.ArgumentParser(description="xxx")
parser.add_argument("--gpu", type=str, help="0; 0,1; 0,3; etc", required=True)
parser.add_argument("--set", type=str, help="set", required=True)
parser.add_argument("--year", type=int, help="year", required=True)
parser.add_argument("--dataset", type=str, help="dataset_name",default='DAVIS')
parser.add_argument("--config", type=str, default='default', help='config file name')
parser.add_argument("--ckpt_num", type=int, help="index to epoch",default=0)
parser.add_argument("--start", type=int, help="index to epoch",default=0)
parser.add_argument("--end", type=int, help="index to epoch",default=0)
parser.add_argument("--video_name", type=str, default=None)
parser.add_argument("--save_path", type=str, default='test_vis')
parser.add_argument("--with_bg", action='store_true')
parser.add_argument("--mask_init", action='store_true')
return parser.parse_args()
args = get_arguments()
cfg = default_config.cfg
default_config.update_config_from_file('./experiments/{:s}.yaml'.format(args.config))
print(cfg)
GPU = args.gpu
YEAR = args.year
SET = args.set
print(cfg.MODEL.TYPE, ': Testing on {:s}{:d}'.format(args.dataset, YEAR))
os.environ['CUDA_VISIBLE_DEVICES'] = GPU
if torch.cuda.is_available():
print('using Cuda devices, num:', torch.cuda.device_count())
if args.dataset == "DAVIS":
Testloaders = [DAVIS_MO_Test(cfg.DATASETS.DAVIS.PATH, resolution='480p',
imset='20{}/{}.txt'.format(YEAR,SET), single_object=(YEAR==16),
scribble_path="valid_scribbles{}".format(scribble_group_id),
mask_init=args.mask_init,with_bg=args.with_bg) for scribble_group_id in range(5)]
else:
raise Exception('Undefined dataset!')
metric = ['J','F']
if args.ckpt_num > 0:
g_res_list, g_measures_list = test(Testloaders, metric, args.ckpt_num, args, cfg)
for scribble_group_id in range(len(g_res_list)):
g_res = g_res_list[scribble_group_id]
print('epoch{:d}_group{:d}:'.format(args.ckpt_num, scribble_group_id), 'J&F-Mean: {:.3f}, J-Mean: {:.3f}, J-Recall: {:.3f}, J-Decay: {:.3f}, \
F-Mean: {:.3f}, F-Recall: {:.3f}, F-Decay: {:.3f}'.format(*g_res))
else:
all_results = {}
for ep in range(args.start, args.end+1):
try:
g_res_list, g_measures_list = test(Testloaders, metric, ep, args, cfg)
all_results[ep] = g_res_list
except FileNotFoundError:
print("Epoch {:d} does not exist".format(ep))
for ep in all_results.keys():
g_res_list = all_results[ep]
for scribble_group_id in range(len(g_res_list)):
g_res = g_res_list[scribble_group_id]
print('epoch{:d}_group{:d}:'.format(args.ckpt_num, scribble_group_id), 'J&F-Mean: {:.3f}, J-Mean: {:.3f}, J-Recall: {:.3f}, J-Decay: {:.3f}, \
F-Mean: {:.3f}, F-Recall: {:.3f}, F-Decay: {:.3f}'.format(*g_res))