-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsde.mako
298 lines (270 loc) · 5.87 KB
/
sde.mako
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
<%include file="rng.mako"/>
<%
import math
%>
// Constants
%for param in const_parameters:
__constant__ float ${param} = 0.0f;
%endfor
__constant__ float dt = 0.0f;
__constant__ unsigned int samples = 0;
<%def name="rng_uni()">
rng_${rng}(
%for i in range(0, rng_state_size):
%if i > 0:
,
%endif
lrng_state + ${i}
%endfor
)
</%def>
// System of differential equations to solve.
__device__ inline void RHS(
%for i in range(0, rhs_vars):
float &dx${i}, float x${i},
%endfor
%for param in par_cuda:
float ${param},
%endfor
float t
)
{
${sde_code}
}
<%def name="Euler()">
for (i = 1; i <= samples; i++) {
## RNG call.
%for i in range(0, int(math.ceil(num_noises/2.0))):
## If need an odd number of normal variates, then
## every other iteration we can simply reuse one
## variate from the previous one.
%if num_noises % 2 and i == num_noises / 2:
if (!(i & 1)) {
n${2*i} = n${2*i+1};
} else {
n${2*i} = ${rng_uni()};
n${2*i+1} = ${rng_uni()};
bm_trans(n${2*i}, n${2*i+1});
}
%else:
n${2*i} = ${rng_uni()};
n${2*i+1} = ${rng_uni()};
bm_trans(n${2*i}, n${2*i+1});
%endif
%endfor
RHS(
%for i in range(0, rhs_vars):
xt${i}, x${i},
%endfor
%for param in par_cuda:
${param},
%endfor
t
);
## Propagation.
%for i in range(0, rhs_vars):
x${i} = x${i} + xt${i} * dt
%if i in noise_strength_map:
%for j, n in enumerate(noise_strength_map[i]):
%if n != 0.0:
+ ${n}*n${j};
%endif
%endfor
%endif
;
%endfor
t = ct + i*dt;
}
</%def>
<%def name="Milstein()">
for (i = 1; i <= samples; i++) {
## RNG call.
%for i in range(0, int(math.ceil(num_noises/2.0))):
## If need an odd number of normal variates, then
## every other iteration we can simply reuse one
## variate from the previous one.
%if num_noises % 2 and i == num_noises / 2:
if (!(i & 1)) {
n${2*i} = n${2*i+1};
} else {
n${2*i} = ${rng_uni()};
n${2*i+1} = ${rng_uni()};
bm_trans(n${2*i}, n${2*i+1});
}
%else:
n${2*i} = ${rng_uni()};
n${2*i+1} = ${rng_uni()};
bm_trans(n${2*i}, n${2*i+1});
%endif
%endfor
RHS(
%for i in range(0, rhs_vars):
xt${i}, x${i},
%endfor
%for param in par_cuda:
${param},
%endfor
t
);
%for i in range(0, rhs_vars):
%if i in noise_strength_map:
%for j, noise in enumerate(noise_strength_map[i]):
float ${noise} = ${local_vars[noise]};
%if ('d%s' % noise) not in local_vars:
%if ('d%s' % noise) not in const_parameters:
<%
raise ValueError('Noise strength derivative d%s needs to be defined.' % noise)
%>
%endif
%else:
float d${noise} = ${local_vars['d%s' % noise]};
%endif
%endfor
%endif
%endfor
## Propagation.
%for i in range(0, rhs_vars):
x${i} = x${i} + xt${i} * dt
%if i in noise_strength_map:
%for j, n in enumerate(noise_strength_map[i]):
%if n != 0.0:
+ ${n}*n${j} + 0.5f * ${n} * d${n} * (n${j}*n${j} - dt)
%endif
%endfor
%endif
;
%endfor
t = ct + i*dt;
}
</%def>
<%def name="SRK2()">
%for i in range(0, rhs_vars):
float xtt${i}, xim${i};
%endfor
for (i = 1; i <= samples; i++) {
## RNG call.
%for i in range(0, int(math.ceil(num_noises/2.0))):
## If we need an odd number of normal variates, then
## every other iteration we can simply reuse one
## variate from the previous one.
%if num_noises % 2 and i == num_noises / 2:
if (!(i & 1)) {
n${2*i} = n${2*i+1};
} else {
n${2*i} = ${rng_uni()};
n${2*i+1} = ${rng_uni()};
bm_trans(n${2*i}, n${2*i+1});
}
%else:
n${2*i} = ${rng_uni()};
n${2*i+1} = ${rng_uni()};
bm_trans(n${2*i}, n${2*i+1});
%endif
%endfor
## First call to RHS.
RHS(
%for i in range(0, rhs_vars):
xt${i}, x${i},
%endfor
%for param in par_cuda:
${param},
%endfor
t
);
## Propagation.
%for i in range(0, rhs_vars):
xim${i} = x${i} + xt${i} * dt
%if i in noise_strength_map:
%for j, n in enumerate(noise_strength_map[i]):
%if n != 0.0:
+ ${n}*n${j};
%endif
%endfor
%endif
;
%endfor
t = ct + i*dt;
## Second call to RHS.
RHS(
%for i in range(0, rhs_vars):
xtt${i}, xim${i},
%endfor
%for param in par_cuda:
${param},
%endfor
t
);
## Propagation.
%for i in range(0, rhs_vars):
x${i} += 0.5f*dt * (xt${i} + xtt${i})
%if i in noise_strength_map:
%for j, n in enumerate(noise_strength_map[i]):
%if n != 0.0:
+ ${n}*n${j}
%endif
%endfor
%endif
;
%endfor
}
</%def>
<%def name="rng_test()">
x0 = ${rng_uni()};
</%def>
__global__ void AdvanceSim(unsigned int *rng_state,
## Kernel arguments.
%for i in range(0, rhs_vars):
float *cx${i},
%endfor
%for param in par_cuda:
float *c${param},
%endfor
float ct)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int i;
## Local variables
float
%for i in range(0, rhs_vars):
x${i}, xt${i},
%endfor
%for param in par_cuda:
${param},
%endfor
%for i in range(0, num_noises + num_noises % 2):
n${i},
%endfor
t;
unsigned int lrng_state[${rng_state_size}];
## Cache to local variables.
%for i in range(0, rhs_vars):
x${i} = cx${i}[idx];
%endfor
%for param in par_cuda:
${param} = c${param}[idx];
%endfor
t = ct;
%for i in range(0, rng_state_size):
lrng_state[${i}] = rng_state[${rng_state_size} * idx + ${i}];
%endfor
// Additional local variables that depend on changing parameters.
%for name, value in local_vars.iteritems():
%if type(value) is not tuple:
float ${name} = ${value};
%endif
%endfor
%if method == 'SRK2':
${SRK2()}
%elif method == 'Euler':
${Euler()}
%elif method == 'Milstein':
${Milstein()}
%endif
## ${rng_test()}
%for i in range(0, rhs_vars):
cx${i}[idx] = x${i};
%endfor
%for i in range (0, rng_state_size):
rng_state[${rng_state_size} * idx + ${i}] = lrng_state[${i}];
%endfor
}