This is the complete code for the OTGK_DP framework to predict ADMET durg properties. The work is pubished in the following papers:
(Paper)
@INPROCEEDINGS{10504311,
author={Aburidi, Mohammed and Marcia, Roummel},
booktitle={2024 IEEE First International Conference on Artificial Intelligence for Medicine, Health and Care (AIMHC)},
title={Wasserstein Distance-Based Graph Kernel for Enhancing Drug Safety and Efficacy Prediction *},
year={2024},
volume={},
number={},
pages={113-119},
keywords={Drugs;Proteins;Adaptation models;Toxicology;Pharmacodynamics;Predictive models;Safety;Optimal Transport;Wasserstein Distance;Graph Matching;Drug Discovery;ADMET Properties},
doi={10.1109/AIMHC59811.2024.00029}}
Comments/Bugs/Problems: [email protected] [email protected]
December, 2023. Initial release
![main_fig](https://private-user-images.githubusercontent.com/48891624/291374001-a52d6c2f-9334-4af2-b596-b3213db96935.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkyOTk2MDcsIm5iZiI6MTczOTI5OTMwNywicGF0aCI6Ii80ODg5MTYyNC8yOTEzNzQwMDEtYTUyZDZjMmYtOTMzNC00YWYyLWI1OTYtYjMyMTNkYjk2OTM1LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTElMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjExVDE4NDE0N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTFjOGU3MWIzNGE3ZGU1NjZjMTg0Y2Q1MDJlZTY5YWE2YmQ5YTk3NGM5YzA4YzNkNTI2NTljZGI3OTIzYmRhMDAmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.Ncgxjp4xk-kVxnjRFnYsXONDeEJDRhBm1IR5tMbuGko)
Find the Colab tutorial in the tutorial folder to run this repository and to predict the drug properties.
The data used in this project is Therapeutics Data Commons - TDC)
To list all of the datasets in AMDE, run the following
from tdc import utils
utils.retrieve_dataset_names('ADME')
To list all of the datasets in TOX, run the following
from tdc import utils
utils.retrieve_dataset_names('TOX')
Make sure to install the following dependincies:
PyTDC
rdkit
torch_geometric
POT
py3Dmol
![Screen Shot 2023-12-18 at 10 33 32 AM](https://private-user-images.githubusercontent.com/48891624/291376593-174fa587-06e1-46c3-b32b-399fdea34d2c.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkyOTk2MDcsIm5iZiI6MTczOTI5OTMwNywicGF0aCI6Ii80ODg5MTYyNC8yOTEzNzY1OTMtMTc0ZmE1ODctMDZlMS00NmMzLWIzMmItMzk5ZmRlYTM0ZDJjLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTElMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjExVDE4NDE0N1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTUyMTRmYzU4YTMyMTExZDhkNzA3YzA2NGY1ZDRiZjAyYTA2NzM4ZGQzZmMzZGViMTc1MTg4MGJhMjAzZGVhMGUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.9lTDhxb-Eu6cj7USME2DM3tSnbSq-n3BbnWF3amga2U)
Cite as:
@inproceedings{aburidi2024_1,
author = {M. Aburidi and R. Marica},
journal = {Scientific Reports},
title = {Optimal Transport-Based Graph Kernels for Drug Property Prediction},
url = {},
year = {2024},
}
@INPROCEEDINGS{10504311,
author={Aburidi, Mohammed and Marcia, Roummel},
booktitle={2024 IEEE First International Conference on Artificial Intelligence for Medicine, Health and Care (AIMHC)},
title={Wasserstein Distance-Based Graph Kernel for Enhancing Drug Safety and Efficacy Prediction},
year={2024},
volume={},
number={},
pages={113-119},
keywords={Drugs;Proteins;Adaptation models;Toxicology;Pharmacodynamics;Predictive models;Safety;Optimal Transport;Wasserstein Distance;Graph Matching;Drug Discovery;ADMET Properties},
doi={10.1109/AIMHC59811.2024.00029}}