-
Notifications
You must be signed in to change notification settings - Fork 893
/
Copy pathcache.py
263 lines (219 loc) · 10 KB
/
cache.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from dataclasses import dataclass
from typing import List, Optional, Tuple
import torch
from xformers.ops.fmha.attn_bias import ( # type: ignore
AttentionBias,
BlockDiagonalCausalMask,
BlockDiagonalCausalWithOffsetPaddedKeysMask,
BlockDiagonalMask,
)
def get_cache_sizes(n_layers: int, max_seq_len: int, sliding_window: Optional[int] | Optional[List[int]]) -> List[int]:
if sliding_window is None:
return n_layers * [max_seq_len]
elif isinstance(sliding_window, int):
return n_layers * [sliding_window]
else:
assert isinstance(sliding_window, list), f"Expected list, got {type(sliding_window)}"
assert (
n_layers % len(sliding_window) == 0
), f"Expected n_layers % len(sliding_window) == 0, got {n_layers} % {len(sliding_window)}"
num_repeats = n_layers // len(sliding_window)
return num_repeats * [w if w is not None else max_seq_len for w in sliding_window]
@dataclass
class CacheInputMetadata:
# # rope absolute positions
# positions: torch.Tensor
# # where tokens should go in the cache
# cache_positions: torch.Tensor
# # if prefill, use block diagonal causal mask
# # else use causal with padded key mask
# prefill: bool
# mask: AttentionBias
# seqlens: List[int]
# rope absolute positions
positions: torch.Tensor
# which elements in the sequences need to be cached
to_cache_mask: torch.Tensor
# how many elements are cached per sequence
cached_elements: torch.Tensor
# where tokens should go in the cache
cache_positions: torch.Tensor
# if prefill, use block diagonal causal mask
# else use causal with padded key mask
prefill: bool
mask: AttentionBias
seqlens: List[int]
def interleave_list(l1: List[torch.Tensor], l2: List[torch.Tensor]) -> List[torch.Tensor]:
assert len(l1) == len(l2)
return [v for pair in zip(l1, l2) for v in pair]
def unrotate(cache: torch.Tensor, seqlen: int) -> torch.Tensor:
assert cache.ndim == 3 # (W, H, D)
position = seqlen % cache.shape[0]
if seqlen < cache.shape[0]:
return cache[:seqlen]
elif position == 0:
return cache
else:
return torch.cat([cache[position:], cache[:position]], dim=0)
class CacheView:
def __init__(
self,
cache_k: torch.Tensor,
cache_v: torch.Tensor,
metadata: CacheInputMetadata,
kv_seqlens: torch.Tensor,
):
self.cache_k = cache_k
self.cache_v = cache_v
self.kv_seqlens = kv_seqlens
self.metadata = metadata
def update(self, xk: torch.Tensor, xv: torch.Tensor) -> None:
"""
to_cache_mask masks the last [max_seq_len] tokens in each sequence
"""
n_kv_heads, head_dim = self.cache_k.shape[-2:]
flat_cache_k = self.cache_k.view(-1, n_kv_heads, head_dim)
flat_cache_v = self.cache_v.view(-1, n_kv_heads, head_dim)
flat_cache_k.index_copy_(0, self.metadata.cache_positions, xk[self.metadata.to_cache_mask])
flat_cache_v.index_copy_(0, self.metadata.cache_positions, xv[self.metadata.to_cache_mask])
def interleave_kv(self, xk: torch.Tensor, xv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
This is a naive implementation and not optimized for speed.
"""
assert xk.ndim == xv.ndim == 3 # (B * T, H, D)
assert xk.shape == xv.shape
if all([s == 0 for s in self.metadata.seqlens]):
# No cache to interleave
return xk, xv
# Make it a list of [(T, H, D)]
xk: Tuple[torch.Tensor] = torch.split(xk, self.metadata.seqlens) # type: ignore
xv: Tuple[torch.Tensor] = torch.split(xv, self.metadata.seqlens) # type: ignore
assert len(xk) == len(self.kv_seqlens), f"Batch size is {len(self.kv_seqlens)}, got {len(xk)}"
# Order elements in cache by position by unrotating
cache_k = [unrotate(t, s) for t, s in zip(self.cache_k, self.kv_seqlens)]
cache_v = [unrotate(t, s) for t, s in zip(self.cache_v, self.kv_seqlens)]
interleaved_k = interleave_list(cache_k, list(xk))
interleaved_v = interleave_list(cache_v, list(xv))
return torch.cat(interleaved_k, dim=0), torch.cat(interleaved_v, dim=0)
@property
def max_seq_len(self) -> int:
return self.cache_k.shape[1]
@property
def key(self) -> torch.Tensor:
return self.cache_k[: len(self.kv_seqlens)]
@property
def value(self) -> torch.Tensor:
return self.cache_v[: len(self.kv_seqlens)]
@property
def prefill(self) -> bool:
return self.metadata.prefill
@property
def mask(self) -> AttentionBias:
return self.metadata.mask
class BufferCache:
"""
This is an example that implements a buffer cache, allowing for variable length sequences.
Allocated cache is rectangular which is wasteful (see PagedAttention for better mechanisms)
"""
def __init__(
self,
n_layers: int,
max_batch_size: int,
max_seq_len: int,
n_kv_heads: int,
head_dim: int,
sliding_window: Optional[int] | Optional[List[int]] = None,
):
self.max_seq_len = max_seq_len
self.n_kv_heads = n_kv_heads
self.head_dim = head_dim
self.n_layers = n_layers
self.cache_sizes: List[int] = get_cache_sizes(n_layers, max_seq_len, sliding_window)
assert len(self.cache_sizes) == n_layers, f"Expected {n_layers} cache sizes, got {len(self.cache_sizes)}"
self.cache_k = {}
self.cache_v = {}
for i, cache_size in enumerate(self.cache_sizes):
self.cache_k[i] = torch.empty((max_batch_size, cache_size, n_kv_heads, head_dim))
self.cache_v[i] = torch.empty((max_batch_size, cache_size, n_kv_heads, head_dim))
# holds the valid length for each batch element in the cache
self.kv_seqlens: Optional[torch.Tensor] = None
def get_view(self, layer_id: int, metadata: CacheInputMetadata) -> CacheView:
assert self.kv_seqlens is not None
return CacheView(self.cache_k[layer_id], self.cache_v[layer_id], metadata, self.kv_seqlens)
def reset(self) -> None:
self.kv_seqlens = None
def init_kvseqlens(self, batch_size: int) -> None:
self.kv_seqlens = torch.zeros((batch_size,), device=self.device, dtype=torch.long)
@property
def device(self) -> torch.device:
return self.cache_k[0].device
def to(self, device: torch.device, dtype: torch.dtype) -> "BufferCache":
for i in range(self.n_layers):
self.cache_k[i] = self.cache_k[i].to(device=device, dtype=dtype)
self.cache_v[i] = self.cache_v[i].to(device=device, dtype=dtype)
return self
def update_seqlens(self, seqlens: List[int]) -> None:
assert self.kv_seqlens is not None
self.kv_seqlens += torch.tensor(seqlens, device=self.device, dtype=torch.long)
def get_input_metadata(self, seqlens: List[int]) -> List[CacheInputMetadata]:
"""
input = seqlens [5,7,2] // seqpos [0, 1, 3] // sliding_window 3
--> only cache last 3 tokens in each sequence
- to_cache_mask = [0 0 1 1 1 | 0 0 0 0 1 1 1 | 1 1]
- cached_elements = [3 | 3 | 2]
--> absolute positions are used for rope
- positions = [0 1 2 3 4 | 1 2 3 4 5 6 7 | 3 4]
--> cache positions are positions cache_masked, modulo sliding_window + batch_idx * sliding_window
- cache_positions = [2 0 1 | 5 3 4 | 6 7]
"""
metadata: List[CacheInputMetadata] = []
if self.kv_seqlens is None:
self.init_kvseqlens(len(seqlens))
assert self.kv_seqlens is not None
assert len(seqlens) == len(
self.kv_seqlens
), f"Batch size is {len(self.kv_seqlens)}, got {len(seqlens)}, did you forget to reset cache?"
seqpos = self.kv_seqlens.tolist()
assert len(seqlens) > 0, seqlens
for cache_size in self.cache_sizes:
metadata.append(self._get_input_metadata_layer(cache_size, seqlens, seqpos))
return metadata
def _get_input_metadata_layer(self, cache_size: int, seqlens: List[int], seqpos: List[int]) -> CacheInputMetadata:
masks = [[x >= seqlen - cache_size for x in range(seqlen)] for seqlen in seqlens]
to_cache_mask = torch.tensor(sum(masks, []), device=self.device, dtype=torch.bool)
cached_elements = torch.tensor([sum(mask) for mask in masks], device=self.device, dtype=torch.long)
positions = torch.cat([torch.arange(pos, pos + seqlen) for pos, seqlen in zip(seqpos, seqlens)]).to(
device=self.device, dtype=torch.long
)
batch_idx = torch.tensor(
sum([[i] * seqlen for i, seqlen in enumerate(seqlens)], []), device=self.device, dtype=torch.long
)
cache_positions = positions % cache_size + batch_idx * cache_size
first_prefill = seqpos[0] == 0
subsequent_prefill = any(seqlen > 1 for seqlen in seqlens)
if first_prefill:
assert all([pos == 0 for pos in seqpos]), seqpos
mask = BlockDiagonalCausalMask.from_seqlens(seqlens).make_local_attention(cache_size)
elif subsequent_prefill:
assert self.kv_seqlens is not None
mask = BlockDiagonalMask.from_seqlens(
q_seqlen=seqlens,
kv_seqlen=[
s + cached_s.clamp(max=cache_size).item() for (s, cached_s) in zip(seqlens, self.kv_seqlens)
],
).make_local_attention_from_bottomright(cache_size)
else:
mask = BlockDiagonalCausalWithOffsetPaddedKeysMask.from_seqlens(
q_seqlen=seqlens,
kv_padding=cache_size,
kv_seqlen=(self.kv_seqlens + cached_elements).clamp(max=cache_size).tolist(),
)
return CacheInputMetadata(
positions=positions,
to_cache_mask=to_cache_mask,
cached_elements=cached_elements,
cache_positions=cache_positions[to_cache_mask],
prefill=first_prefill or subsequent_prefill,
mask=mask,
seqlens=seqlens,
)