-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.sh
executable file
·65 lines (61 loc) · 2.03 KB
/
test.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
KERNEL_INITIALIZER=glorot-uniform
OPTIMIZER=adam
EPOCHS=5
EXPERIMENTS_COUNT=10
SEQUENCE_SCHEME=auto
OUT_DIR=out
mkdir -p $OUT_DIR
# CV subset
for ((experiment_id=1; experiment_id<=EXPERIMENTS_COUNT; experiment_id++))
do
for dataset in "mnist" "cifar10"
do
for model_id in "baseline-ann" "baseline-cnn"
do
for initializer_type in "pseudo-random" "quasi-random"
do
python src/train_and_eval.py \
--experiment_id=${experiment_id} \
--sequence_scheme=$SEQUENCE_SCHEME \
--dataset_id=${dataset} \
--kernel_initializer=$KERNEL_INITIALIZER \
--initializer_type=${initializer_type} \
--units=64 \
--model_id=$model_id \
--batch_size=64 \
--epochs=$EPOCHS \
--optimizer=$OPTIMIZER \
--max_features=20000 \
--out_path="${OUT_DIR}/results_${initializer_type}_${dataset}_${model_id}_${KERNEL_INITIALIZER}_${OPTIMIZER}.${experiment_id}.json"
done
done
done
done
# NLP subset
for ((experiment_id=1; experiment_id<=EXPERIMENTS_COUNT; experiment_id++))
do
for dataset in "imdb_reviews"
do
for model_id in "baseline-lstm" "baseline-transformer"
do
for initializer_type in "pseudo-random" "quasi-random"
do
python src/train_and_eval.py \
--experiment_id=${experiment_id} \
--sequence_scheme=$SEQUENCE_SCHEME \
--dataset_id=${dataset} \
--kernel_initializer=$KERNEL_INITIALIZER \
--initializer_type=${initializer_type} \
--units=64 \
--model_id=$model_id \
--batch_size=64 \
--epochs=$EPOCHS \
--optimizer=$OPTIMIZER \
--max_features=20000 \
--out_path="${OUT_DIR}/results_${initializer_type}_${dataset}_${model_id}_${KERNEL_INITIALIZER}_${OPTIMIZER}.${experiment_id}.json"
done
done
done
done
# aggregate raw stats
python src/data/aggregate_data_files.py -i "$OUT_DIR" -m "results_*.json" -o "aggregate.parquet"