-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathncuts_demo.py
53 lines (42 loc) · 1.63 KB
/
ncuts_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from __future__ import print_function
from __future__ import division
import os, sys, numpy as np, ast
import init_paths
import load_models
from lib.utils import benchmark_utils, util
import tensorflow as tf
import cv2, time, scipy, scipy.misc as scm, sklearn.cluster, skimage.io as skio, numpy as np, argparse
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
import demo
if __name__ == '__main__':
plt.switch_backend('agg')
parser = argparse.ArgumentParser()
parser.add_argument("--im_path", type=str, help="path_to_image")
cfg = parser.parse_args()
assert os.path.exists(cfg.im_path)
imid = cfg.im_path.split('/')[-1].split('.')[0]
save_path = os.path.join('./images', imid + '_ncuts_result.png')
ckpt_path = './ckpt/exif_final/exif_final.ckpt'
exif_demo = demo.Demo(ckpt_path=ckpt_path, use_gpu=0, quality=3.0, num_per_dim=30)
print('Running image %s' % cfg.im_path)
ms_st = time.time()
im_path = cfg.im_path
im1 = skio.imread(im_path)[:,:,:3].astype(np.float32)
res = exif_demo.run(im1, use_ncuts=True, blue_high=True)
print('MeanShift run time: %.3f' % (time.time() - ms_st))
plt.subplots(figsize=(16, 8))
plt.subplot(1, 3, 1)
plt.title('Input Image')
plt.imshow(im1.astype(np.uint8))
plt.axis('off')
plt.subplot(1, 3, 2)
plt.title('Cluster w/ MeanShift')
plt.axis('off')
plt.imshow(res[0], cmap='jet', vmin=0.0, vmax=1.0)
plt.subplot(1, 3, 3)
plt.title('Segment with NCuts')
plt.axis('off')
plt.imshow(res[1], vmin=0.0, vmax=1.0)
plt.savefig(save_path)
print('Result saved %s' % save_path)