-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_quant.py
185 lines (150 loc) · 5.22 KB
/
test_quant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import os
from os import path
import copy
from tqdm import tqdm
import torch
from torch import nn
from gan_training import utils
from gan_training.checkpoints import CheckpointIO
from gan_training.distributions import get_ydist, get_zdist
from gan_training.eval import Evaluator
from gan_training.inputs import get_dataset
from gan_training.config import (
load_config, build_models
)
import subprocess as sp
import numpy as np
import cv2
# Arguments
parser = argparse.ArgumentParser(
description='Test a trained GAN and create visualizations.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
config = load_config(args.config)
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
# Shorthands
nlabels = config['data']['nlabels']
out_dir = config['training']['out_dir']
batch_size = config['test']['batch_size']
sample_size = config['test']['sample_size']
sample_nrow = config['test']['sample_nrow']
checkpoint_dir = path.join(out_dir, 'chkpts')
img_dir = path.join(out_dir, 'test_quant', 'img')
img_gif_dir = path.join(out_dir, 'test_quant', 'img_gif')
label_dir = path.join(out_dir, 'test_quant', 'label')
# Creat missing directories
if not path.exists(img_dir):
os.makedirs(img_dir)
if not path.exists(img_gif_dir):
os.makedirs(img_gif_dir)
if not path.exists(label_dir):
os.makedirs(label_dir)
# Logger
checkpoint_io = CheckpointIO(
checkpoint_dir=checkpoint_dir
)
device = torch.device("cuda:0" if is_cuda else "cpu")
video_len = 16
video_len_train = 16
train_dataset = get_dataset(
name=config['data']['type'],
data_dir=config['data']['train_dir'],
size=config['data']['img_size'],
video_len=video_len_train
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=config['training']['nworkers'],
shuffle=True, pin_memory=True, sampler=None, drop_last=True
)
glove_path = '/net/mlfs01/export/users/ybalaji/Projects/Videogen/code_shapes/deps/GloVe'
glove_dict = utils.get_glove_dict(train_dataset.vocab, glove_path)
generator, image_discriminator, video_discriminator, text_encoder = build_models(config)
print(generator)
print(text_encoder)
# Put models on gpu if needed
generator = generator.to(device)
image_discriminator = image_discriminator.to(device)
video_discriminator = video_discriminator.to(device)
text_encoder = text_encoder.to(device)
# Register modules to checkpoint
checkpoint_io.register_modules(
generator=generator,
image_discriminator=image_discriminator,
video_discriminator=video_discriminator,
text_encoder=text_encoder
)
# Test generator
if config['test']['use_model_average']:
generator_test = copy.deepcopy(generator)
checkpoint_io.register_modules(generator_test=generator_test)
else:
generator_test = generator
text_encoder = text_encoder.eval()
# Evaluator
evaluator = Evaluator(generator_test, train_loader, glove_dict, batch_size=batch_size, device=device, video_len=video_len)
# Load checkpoint if existant
it = checkpoint_io.load('model.pt')
def save_video_stack(video_tensor, path):
vid_list = []
for i in range(video_tensor.size(0)):
frame = video_tensor[i].permute(1, 2, 0)
frame = frame.cpu().numpy()
frame = frame*255
frame = frame.astype(np.uint8)
frame = frame[:, :, ::-1]
vid_list.append(frame)
vid_stack = np.vstack(vid_list)
cv2.imwrite(path, vid_stack)
def save_video_gif(ffmpeg, video, filename):
command = [ffmpeg,
'-y',
'-f', 'rawvideo',
'-vcodec', 'rawvideo',
'-s', '64x64',
'-pix_fmt', 'rgb24',
'-r', '8',
'-i', '-',
'-c:v', 'gif',
'-q:v', '3',
'-an',
filename]
try_flag = True
while try_flag == True:
try:
pipe = sp.Popen(command, stdin=sp.PIPE, stderr=sp.PIPE)
pipe.stdin.write(video.tostring())
try_flag = False
except IOError:
try_flag = True
del pipe
# Samples
print('Creating samples...')
num_samples_to_gen = 125
count = 1
inv_vocab_dict = {}
for k in train_dataset.vocab:
inv_vocab_dict[train_dataset.vocab[k]] = k
for i in range(num_samples_to_gen):
x, y, y_labels = evaluator.create_samples(text_encoder, batch_size=8, video_len=video_len)
if count%10 == 1:
print('%d samples created' %count)
for j in range(x.size(0)):
vid = x[j].permute(1, 0, 2, 3)
vid = (vid/2) + 0.5
save_video_stack(vid, os.path.join(img_dir, '%.5d.png'%count))
if count<20:
vid_gif = vid.permute(0, 2, 3, 1)
vid_gif = vid_gif.cpu().numpy()
vid_gif = vid_gif*255
vid_gif = vid_gif.astype(np.uint8)
save_video_gif('ffmpeg', vid_gif, os.path.join(img_gif_dir, '%.5d.gif' % count))
label_str = '%d,%d,%d,%d,%d'%(y_labels[j][0], y_labels[j][1], y_labels[j][2], y_labels[j][3], y_labels[j][4])
f = open(os.path.join(label_dir, '%.5d.txt'%count), 'w')
f.write(label_str)
f.close()
count += 1