-
Notifications
You must be signed in to change notification settings - Fork 344
/
Copy pathiterator.py
232 lines (201 loc) · 7.45 KB
/
iterator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import random
from pymilvus import (
connections,
utility,
FieldSchema, CollectionSchema, DataType,
Collection,
)
HOST = "localhost"
PORT = "19530"
COLLECTION_NAME = "test_iterator"
USER_ID = "id"
MAX_LENGTH = 65535
AGE = "age"
DEPOSIT = "deposit"
PICTURE = "picture"
CONSISTENCY_LEVEL = "Eventually"
LIMIT = 5
NUM_ENTITIES = 1000
DIM = 8
CLEAR_EXIST = False
def re_create_collection(skip_data_period: bool):
if not skip_data_period:
if utility.has_collection(COLLECTION_NAME) and CLEAR_EXIST:
utility.drop_collection(COLLECTION_NAME)
print(f"dropped existed collection{COLLECTION_NAME}")
fields = [
FieldSchema(name=USER_ID, dtype=DataType.VARCHAR, is_primary=True,
auto_id=False, max_length=MAX_LENGTH),
FieldSchema(name=AGE, dtype=DataType.INT64),
FieldSchema(name=DEPOSIT, dtype=DataType.DOUBLE),
FieldSchema(name=PICTURE, dtype=DataType.FLOAT_VECTOR, dim=DIM)
]
schema = CollectionSchema(fields)
print(f"Create collection {COLLECTION_NAME}")
collection = Collection(COLLECTION_NAME, schema, consistency_level=CONSISTENCY_LEVEL, num_shards=2)
else:
collection = Collection(COLLECTION_NAME)
return collection
def random_pk(filter_set: set, lower_bound: int, upper_bound: int) -> str:
ret: str = ""
while True:
candidate = str(random.randint(lower_bound, upper_bound))
if candidate in filter_set:
continue
ret = candidate
break
return ret
def insert_data(collection):
rng = np.random.default_rng(seed=19530)
batch_count = 5
filter_set: set = {}
for i in range(batch_count):
entities = [
[random_pk(filter_set, 0, batch_count * NUM_ENTITIES) for _ in range(NUM_ENTITIES)],
[int(ni % 100) for ni in range(NUM_ENTITIES)],
[float(ni) for ni in range(NUM_ENTITIES)],
rng.random((NUM_ENTITIES, DIM)),
]
collection.insert(entities)
collection.flush()
print(f"Finish insert batch{i}, number of entities in Milvus: {collection.num_entities}")
def prepare_index(collection):
index = {
"index_type": "IVF_FLAT",
"metric_type": "L2",
"params": {"nlist": 128},
}
collection.create_index(PICTURE, index)
print("Finish Creating index IVF_FLAT")
collection.load()
print("Finish Loading index IVF_FLAT")
def prepare_data(collection):
insert_data(collection)
prepare_index(collection)
return collection
def query_iterate_collection_no_offset(collection):
expr = f"10 <= {AGE} <= 25"
query_iterator = collection.query_iterator(expr=expr, output_fields=[USER_ID, AGE],
offset=0, batch_size=5, consistency_level=CONSISTENCY_LEVEL,
reduce_stop_for_best="false")
no_best_ids: set = set({})
page_idx = 0
while True:
res = query_iterator.next()
if len(res) == 0:
print("query iteration finished, close")
query_iterator.close()
break
for i in range(len(res)):
print(res[i])
no_best_ids.add(res[i]['id'])
page_idx += 1
print(f"page{page_idx}-------------------------")
print("best---------------------------")
query_iterator = collection.query_iterator(expr=expr, output_fields=[USER_ID, AGE],
offset=0, batch_size=5, consistency_level=CONSISTENCY_LEVEL,
reduce_stop_for_best="true")
best_ids: set = set({})
page_idx = 0
while True:
res = query_iterator.next()
if len(res) == 0:
print("query iteration finished, close")
query_iterator.close()
break
for i in range(len(res)):
print(res[i])
best_ids.add(res[i]['id'])
page_idx += 1
print(f"page{page_idx}-------------------------")
diff = best_ids.difference(no_best_ids)
for id in diff:
print(f"diff id:{id}")
def query_iterate_collection_with_offset(collection):
expr = f"10 <= {AGE} <= 14"
query_iterator = collection.query_iterator(expr=expr, output_fields=[USER_ID, AGE],
offset=10, batch_size=50, consistency_level=CONSISTENCY_LEVEL)
page_idx = 0
while True:
res = query_iterator.next()
if len(res) == 0:
print("query iteration finished, close")
query_iterator.close()
break
for i in range(len(res)):
print(res[i])
page_idx += 1
print(f"page{page_idx}-------------------------")
def query_iterate_collection_with_limit(collection):
expr = f"10 <= {AGE} <= 44"
query_iterator = collection.query_iterator(expr=expr, output_fields=[USER_ID, AGE],
batch_size=80, limit=530, consistency_level=CONSISTENCY_LEVEL)
page_idx = 0
while True:
res = query_iterator.next()
if len(res) == 0:
print("query iteration finished, close")
query_iterator.close()
break
for i in range(len(res)):
print(res[i])
page_idx += 1
print(f"page{page_idx}-------------------------")
def search_iterator_collection(collection):
SEARCH_NQ = 1
DIM = 8
rng = np.random.default_rng(seed=19530)
vectors_to_search = rng.random((SEARCH_NQ, DIM))
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10, "radius": 1.0},
}
search_iterator = collection.search_iterator(vectors_to_search, PICTURE, search_params, batch_size=500,
output_fields=[USER_ID])
page_idx = 0
while True:
res = search_iterator.next()
if len(res) == 0:
print("query iteration finished, close")
search_iterator.close()
break
for i in range(len(res)):
print(res[i])
page_idx += 1
print(f"page{page_idx}-------------------------")
def search_iterator_collection_with_limit(collection):
SEARCH_NQ = 1
DIM = 8
rng = np.random.default_rng(seed=19530)
vectors_to_search = rng.random((SEARCH_NQ, DIM))
search_params = {
"metric_type": "L2",
"params": {"nprobe": 10, "radius": 1.0},
}
search_iterator = collection.search_iterator(vectors_to_search, PICTURE, search_params, batch_size=200, limit=755,
output_fields=[USER_ID])
page_idx = 0
while True:
res = search_iterator.next()
if len(res) == 0:
print("query iteration finished, close")
search_iterator.close()
break
for i in range(len(res)):
print(res[i])
page_idx += 1
print(f"page{page_idx}-------------------------")
def main():
skip_data_period = False
connections.connect("default", host=HOST, port=PORT)
collection = re_create_collection(skip_data_period)
if not skip_data_period:
collection = prepare_data(collection)
query_iterate_collection_no_offset(collection)
query_iterate_collection_with_offset(collection)
query_iterate_collection_with_limit(collection)
search_iterator_collection(collection)
search_iterator_collection_with_limit(collection)
if __name__ == '__main__':
main()