-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_SVDdecomp.c
231 lines (190 loc) · 5.86 KB
/
compute_SVDdecomp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include "CommandLineInterface/CLIcore.h"
#include <gsl/gsl_blas.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_matrix.h>
// Local variables pointers
static char *imcinname;
static char *outimname;
static char *outcoeffname;
static CLICMDARGDEF farg[] = {{
CLIARG_IMG,
".inc",
"input 3D cube",
"imc",
CLIARG_VISIBLE_DEFAULT,
(void **) &imcinname,
NULL
},
{
CLIARG_STR,
".outm",
"output modes",
"outm",
CLIARG_VISIBLE_DEFAULT,
(void **) &outimname,
NULL
},
{
CLIARG_STR,
".outcoeff",
"output coeffs",
"outcoeff",
CLIARG_VISIBLE_DEFAULT,
(void **) &outcoeffname,
NULL
}
};
static CLICMDDATA CLIcmddata =
{
"imsvd", "Singular values decomposition", CLICMD_FIELDS_DEFAULTS
};
// detailed help
static errno_t help_function()
{
return RETURN_SUCCESS;
}
// rotation matrix written as SVD_VTm
errno_t linopt_compute_SVDdecomp(const char *IDin_name,
const char *IDout_name,
const char *IDcoeff_name,
imageID *outID)
{
DEBUG_TRACE_FSTART();
imageID IDin;
imageID IDout;
imageID IDcoeff;
gsl_matrix *matrix_D; /* input */
gsl_matrix *matrix_Dtra;
gsl_matrix *matrix_DtraD;
gsl_matrix *matrix_DtraD_evec;
gsl_vector *matrix_DtraD_eval;
gsl_eigen_symmv_workspace *w;
gsl_matrix *matrix_save;
long m;
long n;
uint32_t *arraysizetmp;
imageID ID_VTmatrix;
arraysizetmp = (uint32_t *) malloc(sizeof(uint32_t) * 3);
if(arraysizetmp == NULL)
{
FUNC_RETURN_FAILURE("malloc returns NULL pointer");
}
printf("[SVD start]");
fflush(stdout);
IDin = image_ID(IDin_name);
n = data.image[IDin].md[0].size[0] * data.image[IDin].md[0].size[1];
m = data.image[IDin].md[0].size[2];
matrix_DtraD_eval = gsl_vector_alloc(m);
matrix_D = gsl_matrix_alloc(n, m);
matrix_Dtra = gsl_matrix_alloc(m, n);
matrix_DtraD = gsl_matrix_alloc(m, m);
matrix_DtraD_evec = gsl_matrix_alloc(m, m);
/* write matrix_D */
for(long k = 0; k < m; k++)
{
for(long ii = 0; ii < n; ii++)
{
gsl_matrix_set(matrix_D,
ii,
k,
data.image[IDin].array.F[k * n + ii]);
}
}
/* compute DtraD */
gsl_blas_dgemm(CblasTrans,
CblasNoTrans,
1.0,
matrix_D,
matrix_D,
0.0,
matrix_DtraD);
/* compute the inverse of DtraD */
/* first, compute the eigenvalues and eigenvectors */
w = gsl_eigen_symmv_alloc(m);
matrix_save = gsl_matrix_alloc(m, m);
gsl_matrix_memcpy(matrix_save, matrix_DtraD);
gsl_eigen_symmv(matrix_save, matrix_DtraD_eval, matrix_DtraD_evec, w);
gsl_matrix_free(matrix_save);
gsl_eigen_symmv_free(w);
gsl_eigen_symmv_sort(matrix_DtraD_eval,
matrix_DtraD_evec,
GSL_EIGEN_SORT_ABS_DESC);
create_2Dimage_ID(IDcoeff_name, m, 1, &IDcoeff);
for(long k = 0; k < m; k++)
{
data.image[IDcoeff].array.F[k] = gsl_vector_get(matrix_DtraD_eval, k);
}
/** Write rotation matrix to go from DM modes to eigenmodes */
arraysizetmp[0] = m;
arraysizetmp[1] = m;
ID_VTmatrix = image_ID("SVD_VTm");
if(ID_VTmatrix != -1)
{
delete_image_ID("SVD_VTm", DELETE_IMAGE_ERRMODE_WARNING);
}
create_image_ID("SVD_VTm",
2,
arraysizetmp,
_DATATYPE_FLOAT,
0,
0,
0,
&ID_VTmatrix);
for(long ii = 0; ii < m; ii++) // modes
for(long k = 0; k < m; k++) // modes
{
data.image[ID_VTmatrix].array.F[k * m + ii] =
(float) gsl_matrix_get(matrix_DtraD_evec, k, ii);
}
/// Compute SVD decomp
FUNC_CHECK_RETURN(create_3Dimage_ID(IDout_name,
data.image[IDin].md[0].size[0],
data.image[IDin].md[0].size[1],
data.image[IDin].md[0].size[2],
&IDout));
for(long kk = 0; kk < m; kk++) /// eigen mode index
{
// printf("eigenmode %4ld / %4ld %g\n", kk, m, data.image[IDcoeff].array.F[kk]);
// fflush(stdout);
for(long kk1 = 0; kk1 < m; kk1++)
{
for(long ii = 0; ii < n; ii++)
{
data.image[IDout].array.F[kk * n + ii] +=
data.image[ID_VTmatrix].array.F[kk1 * m + kk] *
data.image[IDin].array.F[kk1 * n + ii];
}
}
}
// delete_image_ID("SVD_VTm");
free(arraysizetmp);
gsl_matrix_free(matrix_D);
gsl_matrix_free(matrix_Dtra);
gsl_matrix_free(matrix_DtraD);
gsl_matrix_free(matrix_DtraD_evec);
gsl_vector_free(matrix_DtraD_eval);
printf("[SVD done]\n");
fflush(stdout);
if(outID != NULL)
{
*outID = IDout;
}
DEBUG_TRACE_FEXIT();
return RETURN_SUCCESS;
}
static errno_t compute_function()
{
DEBUG_TRACE_FSTART();
INSERT_STD_PROCINFO_COMPUTEFUNC_START
linopt_compute_SVDdecomp(imcinname, outimname, outcoeffname, NULL);
INSERT_STD_PROCINFO_COMPUTEFUNC_END
DEBUG_TRACE_FEXIT();
return RETURN_SUCCESS;
}
INSERT_STD_FPSCLIfunctions
errno_t
CLIADDCMD_linopt_imtools__compute_SVDdecomp()
{
INSERT_STD_CLIREGISTERFUNC
return RETURN_SUCCESS;
}