-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathv2.py
244 lines (202 loc) · 8.16 KB
/
v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
import torch.nn as nn
from torch.nn import functional as F
from tqdm import tqdm
# Hyperparameters
batch_size = 64 # how many independent sequences will we process in parallel
block_size = 256 # what is the maximum context length for predictions
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4 # self-attention cannot tolerate very hight learning rates
device = "cuda" if torch.cuda.is_available() else "cpu"
eval_iters = 200
n_embd = 384 # -> 384/6 = 64
n_head = 6
n_layer = 6
dropout = 0.2
# ---------------------------------------------------------------------------
torch.manual_seed(1337)
with open("./input.txt", "r", encoding="utf-8") as file:
text = file.read()
# Here are all unique characters that appear in the text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# Create mapping from characters to integers
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [
stoi[c] for c in s
] # encoder: take a string, output a list of integers
decode = lambda l: "".join(
[itos[i] for i in l]
) # decoder: take a list of integers, output a string
# Train and Validation split
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data)) # first ~90% will be train, rest validation
train_data = data[:n]
val_data = data[n:]
# Data loading into batches
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
"""One head of self-attention"""
def __init__(self, head_size) -> None:
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x) # (B, T, C)
q = self.query(x) # (B, T, C)
# Compute attention scores ("affinities")
wei = q @ k.transpose(-2, -1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(
self.tril[:T, :T] == 0, float("-inf")
) # (B, T, T) , this makes it decoder block, feature doesn't communicate with the past
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# Perform the weighted aggregation of the values
v = self.value(x) # (B, T, C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
"""Multiple heads of self-attention in parallel"""
def __init__(self, num_heads, head_size) -> None:
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out)) # projection back to residual pathway
return out
class FeedForward(nn.Module):
"""A simple linear layer followed by a non-linearity"""
def __init__(self, n_embd) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
"""Transformer block: communication followed by computation"""
def __init__(self, n_embd, n_head) -> None:
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(
self.ln1(x)
) # layer norm is applied before sa and ff, this is where we diverge from the original paper
x = x + self.ffwd(self.ln2(x))
return x
# Super simple bigram model
class BigramLanguageModel(nn.Module):
def __init__(self) -> None:
super().__init__()
# Each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(
*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]
)
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B, T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B, T, C)
pos_emb = self.position_embedding_table(
torch.arange(T, device=device)
) # (T, C)
x = tok_emb + pos_emb # (B, T, C)
x = self.blocks(x) # (B, T, C)
x = self.ln_f(x) # (B, T, C)
logits = self.lm_head(x) # (B, T, vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
model = BigramLanguageModel()
m = model.to(device)
# Create PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# print the number of parameters in the model
print(sum(p.numel() for p in m.parameters()) / 1e6, "M parameters")
loss_temp = None
# Simple training and evaluation loop
for iter in tqdm(range(max_iters)):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0:
losses = estimate_loss()
tqdm.write(
f"Step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
)
if (loss_temp is None) or (losses["val"] < loss_temp):
loss_temp = losses["val"]
torch.save(m.state_dict(), "./best_weights.pth")
tqdm.write(f" Best accuracy in {iter} iteration saved. 💾")
# sample a batch of data
xb, yb = get_batch("train")
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# Generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# Save text of 10000 characters
open("generated.txt", "w").write(
decode(m.generate(context, max_new_tokens=10000)[0].tolist())
)