-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain_with_rllib.py
568 lines (475 loc) · 18.6 KB
/
train_with_rllib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# Copyright (c) 2022, salesforce.com, inc and MILA.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root
# or https://opensource.org/licenses/BSD-3-Clause
"""
Training script for the rice environment using RLlib
https://docs.ray.io/en/latest/rllib-training.html
"""
import logging
import os
import shutil
import subprocess
import sys
import time
import numpy as np
import yaml
from desired_outputs import desired_outputs
from fixed_paths import PUBLIC_REPO_DIR
from run_unittests import import_class_from_path
from opt_helper import save
sys.path.append(PUBLIC_REPO_DIR)
# Set logger level e.g., DEBUG, INFO, WARNING, ERROR.
logging.getLogger().setLevel(logging.DEBUG)
def perform_other_imports():
"""
RLlib-related imports.
"""
import ray
import torch
from gym.spaces import Box, Dict
from ray.rllib.agents.a3c import A2CTrainer
from ray.rllib.env.multi_agent_env import MultiAgentEnv
from ray.tune.logger import NoopLogger
return ray, torch, Box, Dict, MultiAgentEnv, A2CTrainer, NoopLogger
print("Do imports")
try:
other_imports = perform_other_imports()
except ImportError:
print("Installing requirements...")
# Install gym
subprocess.call(["pip", "install", "gym==0.21.0"])
# Install RLlib v1.0.0
subprocess.call(["pip", "install", "ray[rllib]==1.0.0"])
# Install PyTorch
subprocess.call(["pip", "install", "torch==1.9.0"])
other_imports = perform_other_imports()
ray, torch, Box, Dict, MultiAgentEnv, A2CTrainer, NoopLogger = other_imports
from torch_models import TorchLinear
logging.info("Finished imports")
_BIG_NUMBER = 1e20
def recursive_obs_dict_to_spaces_dict(obs):
"""Recursively return the observation space dictionary
for a dictionary of observations
Args:
obs (dict): A dictionary of observations keyed by agent index
for a multi-agent environment
Returns:
spaces.Dict: A dictionary of observation spaces
"""
assert isinstance(obs, dict)
dict_of_spaces = {}
for key, val in obs.items():
# list of lists are 'listified' np arrays
_val = val
if isinstance(val, list):
_val = np.array(val)
elif isinstance(val, (int, np.integer, float, np.floating)):
_val = np.array([val])
# assign Space
if isinstance(_val, np.ndarray):
large_num = float(_BIG_NUMBER)
box = Box(
low=-large_num, high=large_num, shape=_val.shape, dtype=_val.dtype
)
low_high_valid = (box.low < 0).all() and (box.high > 0).all()
# This loop avoids issues with overflow to make sure low/high are good.
while not low_high_valid:
large_num = large_num // 2
box = Box(
low=-large_num, high=large_num, shape=_val.shape, dtype=_val.dtype
)
low_high_valid = (box.low < 0).all() and (box.high > 0).all()
dict_of_spaces[key] = box
elif isinstance(_val, dict):
dict_of_spaces[key] = recursive_obs_dict_to_spaces_dict(_val)
else:
raise TypeError
return Dict(dict_of_spaces)
def recursive_list_to_np_array(dictionary):
"""
Numpy-ify dictionary object to be used with RLlib.
"""
if isinstance(dictionary, dict):
new_d = {}
for key, val in dictionary.items():
if isinstance(val, list):
new_d[key] = np.array(val)
elif isinstance(val, dict):
new_d[key] = recursive_list_to_np_array(val)
elif isinstance(val, (int, np.integer, float, np.floating)):
new_d[key] = np.array([val])
elif isinstance(val, np.ndarray):
new_d[key] = val
else:
raise AssertionError
return new_d
raise AssertionError
class EnvWrapper(MultiAgentEnv):
"""
The environment wrapper class.
"""
def __init__(self, env_config=None):
super().__init__()
env_config_copy = env_config.copy()
if env_config_copy is None:
env_config_copy = {}
source_dir = env_config_copy.get("source_dir", None)
# Remove source_dir key in env_config if it exists
if "source_dir" in env_config_copy:
del env_config_copy["source_dir"]
if source_dir is None:
source_dir = PUBLIC_REPO_DIR
assert isinstance(env_config_copy, dict)
self.env = import_class_from_path("Rice", os.path.join(source_dir, "rice.py"))(
**env_config_copy
)
self.action_space = self.env.action_space
self.observation_space = recursive_obs_dict_to_spaces_dict(self.env.reset())
def reset(self):
"""Reset the env."""
obs = self.env.reset()
return recursive_list_to_np_array(obs)
def step(self, actions=None):
"""Step through the env."""
assert actions is not None
assert isinstance(actions, dict)
obs, rew, done, info = self.env.step(actions)
return recursive_list_to_np_array(obs), rew, done, info
def get_rllib_config(exp_run_config=None, env_class=None, seed=None):
"""
Reference: https://docs.ray.io/en/latest/rllib-training.html
"""
assert exp_run_config is not None
assert env_class is not None
env_config = exp_run_config["env"]
assert isinstance(env_config, dict)
env_object = env_class(env_config=env_config)
# Define all the policies here
policy_config = exp_run_config["policy"]["regions"]
# Map of type MultiAgentPolicyConfigDict from policy ids to tuples
# of (policy_cls, obs_space, act_space, config). This defines the
# observation and action spaces of the policies and any extra config.
policies = {
"regions": (
None, # uses default policy
env_object.observation_space[0],
env_object.action_space[0],
policy_config,
),
}
# Function mapping agent ids to policy ids.
def policy_mapping_fn(agent_id=None):
assert agent_id is not None
return "regions"
# Optional list of policies to train, or None for all policies.
policies_to_train = None
# Settings for Multi-Agent Environments
multiagent_config = {
"policies": policies,
"policies_to_train": policies_to_train,
"policy_mapping_fn": policy_mapping_fn,
}
train_config = exp_run_config["trainer"]
rllib_config = {
# Arguments dict passed to the env creator as an EnvContext object (which
# is a dict plus the properties: num_workers, worker_index, vector_index,
# and remote).
"env_config": exp_run_config["env"],
"framework": train_config["framework"],
"multiagent": multiagent_config,
"num_workers": train_config["num_workers"],
"num_gpus": train_config["num_gpus"],
"num_envs_per_worker": train_config["num_envs"] // train_config["num_workers"],
"train_batch_size": train_config["train_batch_size"],
}
if seed is not None:
rllib_config["seed"] = seed
return rllib_config
def save_model_checkpoint(trainer_obj=None, save_directory=None, current_timestep=0):
"""
Save trained model checkpoints.
"""
assert trainer_obj is not None
assert save_directory is not None
assert os.path.exists(save_directory), (
"Invalid folder path. "
"Please specify a valid directory to save the checkpoints."
)
model_params = trainer_obj.get_weights()
for policy in model_params:
filepath = os.path.join(
save_directory,
f"{policy}_{current_timestep}.state_dict",
)
logging.info(
"Saving the model checkpoints for policy %s to %s.", (policy, filepath)
)
torch.save(model_params[policy], filepath)
def load_model_checkpoints(trainer_obj=None, save_directory=None, ckpt_idx=-1):
"""
Load trained model checkpoints.
"""
assert trainer_obj is not None
assert save_directory is not None
assert os.path.exists(save_directory), (
"Invalid folder path. "
"Please specify a valid directory to load the checkpoints from."
)
files = [f for f in os.listdir(save_directory) if f.endswith("state_dict")]
assert len(files) == len(trainer_obj.config["multiagent"]["policies"])
model_params = trainer_obj.get_weights()
for policy in model_params:
policy_models = [
os.path.join(save_directory, file) for file in files if policy in file
]
# If there are multiple files, then use the ckpt_idx to specify the checkpoint
assert ckpt_idx < len(policy_models)
sorted_policy_models = sorted(policy_models, key=os.path.getmtime)
policy_model_file = sorted_policy_models[ckpt_idx]
model_params[policy] = torch.load(policy_model_file)
logging.info(f"Loaded model checkpoints {policy_model_file}.")
trainer_obj.set_weights(model_params)
def create_trainer(exp_run_config=None, source_dir=None, results_dir=None, seed=None):
"""
Create the RLlib trainer.
"""
assert exp_run_config is not None
if results_dir is None:
# Use the current time as the name for the results directory.
results_dir = f"{time.time():10.0f}"
# Directory to save model checkpoints and metrics
save_config = exp_run_config["saving"]
results_save_dir = os.path.join(
save_config["basedir"],
save_config["name"],
save_config["tag"],
results_dir,
)
ray.init(ignore_reinit_error=True)
# Create the A2C trainer.
exp_run_config["env"]["source_dir"] = source_dir
rllib_trainer = A2CTrainer(
env=EnvWrapper,
config=get_rllib_config(
exp_run_config=exp_run_config, env_class=EnvWrapper, seed=seed
),
)
return rllib_trainer, results_save_dir
def fetch_episode_states(trainer_obj=None, episode_states=None):
"""
Helper function to rollout the env and fetch env states for an episode.
"""
assert trainer_obj is not None
assert episode_states is not None
assert isinstance(episode_states, list)
assert len(episode_states) > 0
outputs = {}
# Fetch the env object from the trainer
env_object = trainer_obj.workers.local_worker().env
obs = env_object.reset()
env = env_object.env
for state in episode_states:
assert state in env.global_state, f"{state} is not in global state!"
# Initialize the episode states
array_shape = env.global_state[state]["value"].shape
outputs[state] = np.nan * np.ones(array_shape)
agent_states = {}
policy_ids = {}
policy_mapping_fn = trainer_obj.config["multiagent"]["policy_mapping_fn"]
for region_id in range(env.num_agents):
policy_ids[region_id] = policy_mapping_fn(region_id)
agent_states[region_id] = trainer_obj.get_policy(
policy_ids[region_id]
).get_initial_state()
for timestep in range(env.episode_length):
for state in episode_states:
outputs[state][timestep] = env.global_state[state]["value"][timestep]
actions = {}
# TODO: Consider using the `compute_actions` (instead of `compute_action`)
# API below for speed-up when there are many agents.
for region_id in range(env.num_agents):
if (
len(agent_states[region_id]) == 0
): # stateless, with a linear model, for example
actions[region_id] = trainer_obj.compute_action(
obs[region_id],
agent_states[region_id],
policy_id=policy_ids[region_id],
)
else: # stateful
(
actions[region_id],
agent_states[region_id],
_,
) = trainer_obj.compute_action(
obs[region_id],
agent_states[region_id],
policy_id=policy_ids[region_id],
)
obs, _, done, _ = env_object.step(actions)
if done["__all__"]:
for state in episode_states:
outputs[state][timestep + 1] = env.global_state[state]["value"][
timestep + 1
]
break
return outputs
def trainer(
negotiation_on=0,
num_envs=100,
train_batch_size=1024,
num_episodes=30000,
lr=0.0005,
model_params_save_freq=5000,
desired_outputs=desired_outputs,
num_workers=4,
):
print("Training with RLlib...")
# Read the run configurations specific to the environment.
# Note: The run config yaml(s) can be edited at warp_drive/training/run_configs
# -----------------------------------------------------------------------------
config_path = os.path.join(PUBLIC_REPO_DIR, "scripts", "rice_rllib.yaml")
if not os.path.exists(config_path):
raise ValueError(
"The run configuration is missing. Please make sure the correct path "
"is specified."
)
with open(config_path, "r", encoding="utf8") as fp:
run_config = yaml.safe_load(fp)
# replace the default setting
run_config["env"]["negotiation_on"] = negotiation_on
run_config["trainer"]["num_envs"] = num_envs
run_config["trainer"]["train_batch_size"] = train_batch_size
run_config["trainer"]["num_workers"] = num_workers
run_config["trainer"]["num_episodes"] = num_episodes
run_config["policy"]["regions"]["lr"] = lr
run_config["saving"]["model_params_save_freq"] = model_params_save_freq
# Create trainer
# --------------
trainer, save_dir = create_trainer(run_config)
# debug: print("trainer weghts: ", trainer.get_weights()["regions"]["policy_head.97.weight"])
# Copy the source files into the results directory
# ------------------------------------------------
os.makedirs(save_dir)
with open(os.path.join(save_dir, "rice_rllib.yaml"), "w") as yaml_file:
yaml.dump(run_config, yaml_file)
# Copy source files to the saving directory
for file in ["rice.py", "rice_helpers.py"]:
shutil.copyfile(
os.path.join(PUBLIC_REPO_DIR, file),
os.path.join(save_dir, file),
)
# Add an identifier file
with open(os.path.join(save_dir, ".rllib"), "x", encoding="utf-8") as fp:
pass
fp.close()
# Perform training
# ----------------
trainer_config = run_config["trainer"]
# num_episodes = trainer_config["num_episodes"]
# train_batch_size = trainer_config["train_batch_size"]
# Fetch the env object from the trainer
env_obj = trainer.workers.local_worker().env.env
episode_length = env_obj.episode_length
num_iters = (num_episodes * episode_length) // train_batch_size
for iteration in range(num_iters):
print(f"********** Iter : {iteration + 1:5d} / {num_iters:5d} **********")
result = trainer.train()
total_timesteps = result.get("timesteps_total")
if (
iteration % run_config["saving"]["model_params_save_freq"] == 0
or iteration == num_iters - 1
):
save_model_checkpoint(trainer, save_dir, total_timesteps)
logging.info(result)
print(f"""episode_reward_mean: {result.get('episode_reward_mean')}""")
outputs_ts = fetch_episode_states(trainer, desired_outputs)
save(
outputs_ts,
os.path.join(
save_dir,
f"outputs_ts_{total_timesteps}.pkl",
),
)
print(f"Saving logged outputs to {save_dir}")
# Create a (zipped) submission file
# ---------------------------------
subprocess.call(
[
"python",
os.path.join(PUBLIC_REPO_DIR, "scripts", "create_submission_zip.py"),
"--results_dir",
save_dir,
]
)
# Close Ray gracefully after completion
ray.shutdown()
return trainer, outputs_ts
if __name__ == "__main__":
print("Training with RLlib...")
# Read the run configurations specific to the environment.
# Note: The run config yaml(s) can be edited at warp_drive/training/run_configs
# -----------------------------------------------------------------------------
config_path = os.getenv("CONFIG_FILE", os.path.join(PUBLIC_REPO_DIR, "scripts", "rice_rllib.yaml"))
if not os.path.exists(config_path):
raise ValueError(
"The run configuration is missing. Please make sure the correct path "
"is specified."
)
with open(config_path, "r", encoding="utf8") as fp:
run_config = yaml.safe_load(fp)
# Create trainer
# --------------
trainer, save_dir = create_trainer(run_config)
# Copy the source files into the results directory
# ------------------------------------------------
os.makedirs(save_dir)
# Copy source files to the saving directory
for file in ["rice.py", "rice_helpers.py"]:
shutil.copyfile(
os.path.join(PUBLIC_REPO_DIR, file),
os.path.join(save_dir, file),
)
for file in ["rice_rllib.yaml"]:
shutil.copyfile(
os.path.join(PUBLIC_REPO_DIR, "scripts", file),
os.path.join(save_dir, file),
)
# Add an identifier file
with open(os.path.join(save_dir, ".rllib"), "x", encoding="utf-8") as fp:
pass
fp.close()
# Perform training
# ----------------
trainer_config = run_config["trainer"]
num_episodes = trainer_config["num_episodes"]
train_batch_size = trainer_config["train_batch_size"]
# Fetch the env object from the trainer
env_obj = trainer.workers.local_worker().env.env
episode_length = env_obj.episode_length
num_iters = (num_episodes * episode_length) // train_batch_size
for iteration in range(num_iters):
print(f"********** Iter : {iteration + 1:5d} / {num_iters:5d} **********")
result = trainer.train()
total_timesteps = result.get("timesteps_total")
if (
iteration % run_config["saving"]["model_params_save_freq"] == 0
or iteration == num_iters - 1
):
save_model_checkpoint(trainer, save_dir, total_timesteps)
logging.info(result)
print(f"""episode_reward_mean: {result.get('episode_reward_mean')}""")
# Create a (zipped) submission file
# ---------------------------------
subprocess.call(
[
"python",
os.path.join(PUBLIC_REPO_DIR, "scripts", "create_submission_zip.py"),
"--results_dir",
save_dir,
]
)
# Close Ray gracefully after completion
ray.shutdown()