From 377c69990fa554019a0140a8f611eee1ab388bb0 Mon Sep 17 00:00:00 2001 From: Ashwin Nair Date: Tue, 11 Apr 2023 15:53:19 +0400 Subject: [PATCH] Remove preprocess --- torchgeo/datamodules/vhr10.py | 34 +--------------------------------- 1 file changed, 1 insertion(+), 33 deletions(-) diff --git a/torchgeo/datamodules/vhr10.py b/torchgeo/datamodules/vhr10.py index 0dfb5b9a009..1db0154e1d1 100644 --- a/torchgeo/datamodules/vhr10.py +++ b/torchgeo/datamodules/vhr10.py @@ -7,10 +7,9 @@ import kornia.augmentation as K import torch -import torchvision from einops import rearrange from torch import Generator, Tensor -from torch.nn.modules import Module +from torch.nn import Module from torch.utils.data import random_split from ..datasets import VHR10 @@ -139,37 +138,6 @@ def __init__( batch_size, ) - self.kwargs["download"] = True - - def preprocess(self, sample: Dict[str, Any]) -> Dict[str, Any]: - """Transform a single sample from the Dataset. - - Args: - sample: input image dictionary - - Returns: - preprocessed sample - """ - sample["image"] = sample["image"].float() - - _, h, w = sample["image"].shape - sample["image"] = torchvision.transforms.functional.resize( - sample["image"], size=self.patch_size - ) - box_scale = (self.patch_size[1] / w, self.patch_size[0] / h) - sample["boxes"][:, 0] *= box_scale[0] - sample["boxes"][:, 1] *= box_scale[1] - sample["boxes"][:, 2] *= box_scale[0] - sample["boxes"][:, 3] *= box_scale[1] - sample["boxes"] = torch.round(sample["boxes"]) - - if "masks" in sample: - sample["masks"] = torchvision.transforms.functional.resize( - sample["masks"], size=self.patch_size - ) - - return sample - def setup(self, stage: str) -> None: """Set up datasets.