-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathmodel_tests.cc
837 lines (779 loc) · 40.6 KB
/
model_tests.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
// Copyright (c) Microsoft Corporation. All rights reserved.
// SPDX-FileCopyrightText: Copyright 2024 Arm Limited and/or its affiliates <[email protected]>
// Licensed under the MIT License.
#include <iostream>
#include <iterator>
#include <string>
#include <codecvt>
#include <locale>
#include <filesystem>
#include <utility>
#include <unordered_map>
#include <gtest/gtest.h>
#include "core/session/onnxruntime_c_api.h"
#include "core/session/onnxruntime_cxx_api.h"
#include "core/session/ort_apis.h"
#include "core/session/inference_session.h"
#include "core/session/ort_env.h"
#include "core/providers/tensorrt/tensorrt_provider_options.h"
#include "asserts.h"
#include <core/platform/path_lib.h>
#include "default_providers.h"
#include "test/onnx/TestCase.h"
#ifdef USE_DNNL
#include "core/providers/dnnl/dnnl_provider_factory.h"
#endif
#ifdef USE_NNAPI
#include "core/providers/nnapi/nnapi_provider_factory.h"
#endif
#ifdef USE_VSINPU
#include "core/providers/vsinpu/vsinpu_provider_factory.h"
#endif
#ifdef USE_RKNPU
#include "core/providers/rknpu/rknpu_provider_factory.h"
#endif
#ifdef USE_ACL
#include "core/providers/acl/acl_provider_factory.h"
#endif
#ifdef USE_ARMNN
#include "core/providers/armnn/armnn_provider_factory.h"
#endif
#include "test/common/cuda_op_test_utils.h"
// test infrastructure
#include "test/onnx/testenv.h"
#include "test/onnx/TestCase.h"
#include "test/compare_ortvalue.h"
#include "test/onnx/heap_buffer.h"
#include "test/onnx/onnx_model_info.h"
#include "test/onnx/testcase_request.h"
extern std::unique_ptr<Ort::Env> ort_env;
// asserts that the OrtStatus* result of `status_expr` does not indicate an error
// note: this takes ownership of the OrtStatus* result
#define ASSERT_ORT_STATUS_OK(status_expr) \
do { \
if (OrtStatus* _status = (status_expr); _status != nullptr) { \
std::unique_ptr<OrtStatus, decltype(&OrtApis::ReleaseStatus)> _rel_status{ \
_status, &OrtApis::ReleaseStatus}; \
FAIL() << "OrtStatus error: " << OrtApis::GetErrorMessage(_rel_status.get()); \
} \
} while (false)
using namespace onnxruntime::common;
namespace onnxruntime {
namespace test {
// parameter is provider_name + "_" + model_path
class ModelTest : public testing::TestWithParam<std::basic_string<ORTCHAR_T>> {};
#ifdef GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(ModelTest);
#endif
void SkipTest(const std::string& reason = "") {
GTEST_SKIP() << "Skipping single test " << reason;
}
TEST_P(ModelTest, Run) {
std::basic_string<ORTCHAR_T> param = GetParam();
size_t pos = param.find(ORT_TSTR("_"));
ASSERT_NE(pos, std::string::npos);
std::string provider_name = ToUTF8String(param.substr(0, pos));
std::basic_string<ORTCHAR_T> model_path = param.substr(pos + 1);
double per_sample_tolerance = 1e-3;
double relative_per_sample_tolerance = 1e-3;
// when cuda or openvino is enabled, set it to a larger value for resolving random MNIST test failure
if (model_path.find(ORT_TSTR("_MNIST")) > 0) {
if (provider_name == "cuda" || provider_name == "openvino" || provider_name == "rocm") {
per_sample_tolerance = 2.5e-2;
relative_per_sample_tolerance = 1e-2;
}
}
std::unique_ptr<OnnxModelInfo> model_info = std::make_unique<OnnxModelInfo>(model_path.c_str());
if (model_info->HasDomain(ONNX_NAMESPACE::AI_ONNX_TRAINING_DOMAIN) ||
model_info->HasDomain(ONNX_NAMESPACE::AI_ONNX_PREVIEW_TRAINING_DOMAIN)) {
SkipTest("it has the training domain. No pipeline should need to run these tests.");
return;
}
auto broken_tests = GetBrokenTests(provider_name);
auto broken_tests_keyword_set = GetBrokenTestsKeyWordSet(provider_name);
std::basic_string<ORTCHAR_T> model_dir;
(void)GetDirNameFromFilePath(model_path, model_dir);
std::basic_string<PATH_CHAR_TYPE> test_case_name = GetLastComponent(model_dir);
if (test_case_name.compare(0, 5, ORT_TSTR("test_")) == 0)
test_case_name = test_case_name.substr(5);
{
BrokenTest t = {ToUTF8String(test_case_name), ""};
auto iter = broken_tests->find(t);
auto opset_version = model_info->GetNominalOpsetVersion();
if (iter != broken_tests->end() &&
(opset_version == TestModelInfo::unknown_version || iter->broken_opset_versions_.empty() ||
iter->broken_opset_versions_.find(opset_version) != iter->broken_opset_versions_.end())) {
SkipTest("It's in broken_tests");
return;
}
for (auto iter2 = broken_tests_keyword_set->begin(); iter2 != broken_tests_keyword_set->end(); ++iter2) {
std::string keyword = *iter2;
if (ToUTF8String(test_case_name).find(keyword) != std::string::npos) {
SkipTest("It's in broken_tests_keyword");
return;
}
}
}
// TODO(leca): move the parallel run test list to a config file and load it in GetParameterStrings() to make the load process run only once
std::set<std::string> tests_run_parallel = {"test_resnet18v2",
"test_resnet34v2",
"test_resnet50",
"test_resnet50v2",
"test_resnet101v2",
"test_resnet152v2",
"keras_lotus_resnet3D",
"coreml_Resnet50_ImageNet",
"mlperf_mobilenet",
"mlperf_resnet",
"mlperf_ssd_mobilenet_300",
"mlperf_ssd_resnet34_1200"};
bool is_single_node = !model_info->GetNodeName().empty();
std::vector<ExecutionMode> execution_modes = {ExecutionMode::ORT_SEQUENTIAL};
if (provider_name == "cpu" && !is_single_node)
execution_modes.push_back(ExecutionMode::ORT_PARALLEL);
std::vector<bool> use_single_thread{false};
// Test the model with intra op threadpool disabled
if (provider_name == "cpu" && is_single_node)
use_single_thread.push_back(true);
std::unique_ptr<ITestCase> l = CreateOnnxTestCase(ToUTF8String(test_case_name), std::move(model_info),
per_sample_tolerance, relative_per_sample_tolerance);
#ifndef USE_DNNL
auto tp = TestEnv::CreateThreadPool(Env::Default());
#endif
for (bool is_single_thread : use_single_thread) {
for (ExecutionMode execution_mode : execution_modes) {
Ort::SessionOptions ortso{};
if (!is_single_thread) {
ortso.DisablePerSessionThreads();
} else {
ortso.SetIntraOpNumThreads(1);
}
ortso.SetExecutionMode(execution_mode);
ortso.SetLogId(ToUTF8String(test_case_name).c_str());
ortso.SetLogSeverityLevel(ORT_LOGGING_LEVEL_ERROR);
if (provider_name == "cuda") {
OrtCUDAProviderOptionsV2* cuda_options = nullptr;
ASSERT_ORT_STATUS_OK(OrtApis::CreateCUDAProviderOptions(&cuda_options));
std::unique_ptr<OrtCUDAProviderOptionsV2, decltype(&OrtApis::ReleaseCUDAProviderOptions)> rel_cuda_options(
cuda_options, &OrtApis::ReleaseCUDAProviderOptions);
std::vector<const char*> keys{"device_id", "use_tf32"};
std::vector<const char*> values;
std::string device_id = Env::Default().GetEnvironmentVar("ONNXRUNTIME_TEST_GPU_DEVICE_ID");
values.push_back(device_id.empty() ? "0" : device_id.c_str());
values.push_back("0");
ASSERT_ORT_STATUS_OK(OrtApis::UpdateCUDAProviderOptions(cuda_options, keys.data(), values.data(), 2));
ortso.AppendExecutionProvider_CUDA_V2(*cuda_options);
} else if (provider_name == "rocm") {
OrtROCMProviderOptions ep_options;
ortso.AppendExecutionProvider_ROCM(ep_options);
}
#ifdef USE_DNNL
else if (provider_name == "dnnl") {
OrtDnnlProviderOptions* ep_option;
ASSERT_ORT_STATUS_OK(OrtApis::CreateDnnlProviderOptions(&ep_option));
std::unique_ptr<OrtDnnlProviderOptions, decltype(&OrtApis::ReleaseDnnlProviderOptions)>
rel_dnnl_options(ep_option, &OrtApis::ReleaseDnnlProviderOptions);
ep_option->use_arena = 0;
ASSERT_ORT_STATUS_OK(OrtApis::SessionOptionsAppendExecutionProvider_Dnnl(ortso, ep_option));
}
#endif
else if (provider_name == "tensorrt") {
if (test_case_name.find(ORT_TSTR("FLOAT16")) != std::string::npos) {
OrtTensorRTProviderOptionsV2 params;
ortso.AppendExecutionProvider_TensorRT_V2(params);
} else {
OrtTensorRTProviderOptionsV2* ep_option = nullptr;
ASSERT_ORT_STATUS_OK(OrtApis::CreateTensorRTProviderOptions(&ep_option));
std::unique_ptr<OrtTensorRTProviderOptionsV2, decltype(&OrtApis::ReleaseTensorRTProviderOptions)>
rel_cuda_options(ep_option, &OrtApis::ReleaseTensorRTProviderOptions);
ortso.AppendExecutionProvider_TensorRT_V2(*ep_option);
}
// Enable CUDA fallback
OrtCUDAProviderOptionsV2* cuda_options = nullptr;
ASSERT_ORT_STATUS_OK(OrtApis::CreateCUDAProviderOptions(&cuda_options));
std::unique_ptr<OrtCUDAProviderOptionsV2, decltype(&OrtApis::ReleaseCUDAProviderOptions)> rel_cuda_options(
cuda_options, &OrtApis::ReleaseCUDAProviderOptions);
std::vector<const char*> keys{"device_id", "use_tf32"};
std::vector<const char*> values;
std::string device_id = Env::Default().GetEnvironmentVar("ONNXRUNTIME_TEST_GPU_DEVICE_ID");
values.push_back(device_id.empty() ? "0" : device_id.c_str());
values.push_back("0");
ASSERT_ORT_STATUS_OK(OrtApis::UpdateCUDAProviderOptions(cuda_options, keys.data(), values.data(), 2));
ortso.AppendExecutionProvider_CUDA_V2(*cuda_options);
} else if (provider_name == "migraphx") {
OrtMIGraphXProviderOptions ep_options;
ortso.AppendExecutionProvider_MIGraphX(ep_options);
} else if (provider_name == "openvino") {
OrtOpenVINOProviderOptions ep_options;
ortso.AppendExecutionProvider_OpenVINO(ep_options);
}
#ifdef USE_NNAPI
else if (provider_name == "nnapi") {
ASSERT_ORT_STATUS_OK(OrtSessionOptionsAppendExecutionProvider_Nnapi(ortso, 0));
}
#endif
#ifdef USE_VSINPU
else if (provider_name == "vsinpu") {
ASSERT_ORT_STATUS_OK(OrtSessionOptionsAppendExecutionProvider_VSINPU(ortso));
}
#endif
#ifdef USE_RKNPU
else if (provider_name == "rknpu") {
ASSERT_ORT_STATUS_OK(OrtSessionOptionsAppendExecutionProvider_Rknpu(ortso));
}
#endif
#ifdef USE_ACL
else if (provider_name == "acl") {
ASSERT_ORT_STATUS_OK(OrtSessionOptionsAppendExecutionProvider_ACL(ortso, false));
}
#endif
#ifdef USE_ARMNN
else if (provider_name == "armnn") {
ASSERT_ORT_STATUS_OK(OrtSessionOptionsAppendExecutionProvider_ArmNN(ortso));
}
#endif
#ifdef USE_XNNPACK
else if (provider_name == "xnnpack") {
ortso.AppendExecutionProvider("XNNPACK");
}
#endif
OrtSession* ort_session;
OrtStatus* ort_st = OrtApis::CreateSession(*ort_env, model_path.c_str(), ortso, &ort_session);
if (ort_st != nullptr) {
OrtErrorCode error_code = OrtApis::GetErrorCode(ort_st);
if (error_code == ORT_NOT_IMPLEMENTED) {
OrtApis::ReleaseStatus(ort_st);
continue;
}
FAIL() << OrtApis::GetErrorMessage(ort_st);
}
std::unique_ptr<OrtSession, decltype(&OrtApis::ReleaseSession)> rel_ort_session(ort_session,
&OrtApis::ReleaseSession);
const size_t data_count = l->GetDataCount();
#ifndef USE_DNNL // potential crash for DNNL pipeline
if (data_count > 1 && tests_run_parallel.find(l->GetTestCaseName()) != tests_run_parallel.end()) {
LOGS_DEFAULT(ERROR) << "Parallel test for " << l->GetTestCaseName(); // TODO(leca): change level to INFO or even delete the log once verified parallel test working
std::shared_ptr<TestCaseResult> results = TestCaseRequestContext::Run(tp.get(), *l, *ort_env, ortso, data_count, 1 /*repeat_count*/);
for (EXECUTE_RESULT res : results->GetExcutionResult()) {
EXPECT_EQ(res, EXECUTE_RESULT::SUCCESS) << "is_single_thread:" << is_single_thread << ", execution_mode:" << execution_mode << ", provider_name:"
<< provider_name << ", test name:" << results->GetName() << ", result: " << res;
}
continue;
}
#endif // !USE_DNNL
// TODO(leca): leverage TestCaseRequestContext::Run() to make it short
auto default_allocator = std::make_unique<MockedOrtAllocator>();
for (size_t task_id = 0; task_id != data_count; ++task_id) {
onnxruntime::test::HeapBuffer holder;
std::unordered_map<std::string, Ort::Value> feeds;
l->LoadTestData(task_id, holder, feeds, true);
size_t output_count;
ASSERT_ORT_STATUS_OK(OrtApis::SessionGetOutputCount(ort_session, &output_count));
// Create output feed
std::vector<char*> output_names(output_count);
for (size_t i = 0; i != output_count; ++i) {
ASSERT_ORT_STATUS_OK(
OrtApis::SessionGetOutputName(ort_session, i, default_allocator.get(), &output_names[i]));
}
std::vector<const char*> input_names;
std::vector<OrtValue*> input_values;
std::vector<OrtValue*> output_values(output_count);
{
for (auto& p : feeds) {
input_names.push_back(p.first.c_str());
input_values.push_back(p.second);
}
ort_st = OrtApis::Run(ort_session, nullptr, input_names.data(), input_values.data(), input_values.size(),
output_names.data(), output_names.size(), output_values.data());
if (ort_st != nullptr) {
OrtErrorCode error_code = OrtApis::GetErrorCode(ort_st);
if (error_code == ORT_NOT_IMPLEMENTED) {
OrtApis::ReleaseStatus(ort_st);
for (char* p : output_names) {
default_allocator->Free(p);
}
for (OrtValue* v : output_values) {
OrtApis::ReleaseValue(v);
}
}
FAIL() << OrtApis::GetErrorMessage(ort_st);
}
}
bool post_procesing = false;
Status status;
l->GetPerSampleTolerance(&per_sample_tolerance);
l->GetRelativePerSampleTolerance(&relative_per_sample_tolerance);
l->GetPostProcessing(&post_procesing);
// TODO: if there are no output value files, just skip the validation
std::unordered_map<std::string, Ort::Value> expected_output_values;
l->LoadTestData(task_id, holder, expected_output_values, false);
std::unordered_map<std::string, OrtValue*> name_fetch_output_map;
std::unordered_map<std::string, const ONNX_NAMESPACE::ValueInfoProto*> name_output_value_info_proto;
size_t i = 0;
for (auto& output_name : output_names) {
// p_fetches is filled in the order of output_names.
name_fetch_output_map[output_name] = output_values[i];
const ONNX_NAMESPACE::ValueInfoProto* infoProto = l->GetOutputInfoFromModel(i);
if (infoProto != nullptr)
name_output_value_info_proto.insert(std::make_pair(infoProto->name(), infoProto));
i++;
}
for (auto& output : expected_output_values) {
const OrtValue* expected_output_value = output.second;
const std::string& output_name = output.first;
auto iter = name_fetch_output_map.find(output_name);
ASSERT_NE(iter, name_fetch_output_map.end());
OrtValue* actual_output_value = iter->second;
std::pair<COMPARE_RESULT, std::string> ret =
CompareOrtValue(*actual_output_value, *expected_output_value, per_sample_tolerance,
relative_per_sample_tolerance, post_procesing);
COMPARE_RESULT compare_result = ret.first;
ASSERT_EQ(COMPARE_RESULT::SUCCESS, ret.first) << ret.second;
const ONNX_NAMESPACE::ValueInfoProto* v = name_output_value_info_proto[output_name];
if (v == nullptr)
continue;
ret = VerifyValueInfo(*v, actual_output_value);
compare_result = ret.first;
ASSERT_EQ(COMPARE_RESULT::SUCCESS, ret.first) << ret.second;
if (compare_result != COMPARE_RESULT::SUCCESS) {
break;
}
}
for (char* p : output_names) {
default_allocator->Free(p);
}
for (OrtValue* v : output_values) {
OrtApis::ReleaseValue(v);
}
}
}
}
}
using ORT_STRING_VIEW = std::basic_string_view<ORTCHAR_T>;
static constexpr ORT_STRING_VIEW opset7 = ORT_TSTR("opset7");
static constexpr ORT_STRING_VIEW opset8 = ORT_TSTR("opset8");
static constexpr ORT_STRING_VIEW opset9 = ORT_TSTR("opset9");
static constexpr ORT_STRING_VIEW opset10 = ORT_TSTR("opset10");
static constexpr ORT_STRING_VIEW opset11 = ORT_TSTR("opset11");
static constexpr ORT_STRING_VIEW opset12 = ORT_TSTR("opset12");
static constexpr ORT_STRING_VIEW opset13 = ORT_TSTR("opset13");
static constexpr ORT_STRING_VIEW opset14 = ORT_TSTR("opset14");
static constexpr ORT_STRING_VIEW opset15 = ORT_TSTR("opset15");
static constexpr ORT_STRING_VIEW opset16 = ORT_TSTR("opset16");
static constexpr ORT_STRING_VIEW opset17 = ORT_TSTR("opset17");
static constexpr ORT_STRING_VIEW opset18 = ORT_TSTR("opset18");
// TODO: enable opset19 tests
// static constexpr ORT_STRING_VIEW opset19 = ORT_TSTR("opset19");
static constexpr ORT_STRING_VIEW provider_name_cpu = ORT_TSTR("cpu");
static constexpr ORT_STRING_VIEW provider_name_tensorrt = ORT_TSTR("tensorrt");
#ifdef USE_MIGRAPHX
static constexpr ORT_STRING_VIEW provider_name_migraphx = ORT_TSTR("migraphx");
#endif
static constexpr ORT_STRING_VIEW provider_name_openvino = ORT_TSTR("openvino");
static constexpr ORT_STRING_VIEW provider_name_cuda = ORT_TSTR("cuda");
static constexpr ORT_STRING_VIEW provider_name_rocm = ORT_TSTR("rocm");
static constexpr ORT_STRING_VIEW provider_name_dnnl = ORT_TSTR("dnnl");
// For any non-Android system, NNAPI will only be used for ort model converter
#if defined(USE_NNAPI) && defined(__ANDROID__)
static constexpr ORT_STRING_VIEW provider_name_nnapi = ORT_TSTR("nnapi");
#endif
#ifdef USE_VSINPU
static ORT_STRING_VIEW provider_name_vsinpu = ORT_TSTR("vsinpu");
#endif
#ifdef USE_RKNPU
static constexpr ORT_STRING_VIEW provider_name_rknpu = ORT_TSTR("rknpu");
#endif
#ifdef USE_ACL
static constexpr ORT_STRING_VIEW provider_name_acl = ORT_TSTR("acl");
#endif
#ifdef USE_ARMNN
static constexpr ORT_STRING_VIEW provider_name_armnn = ORT_TSTR("armnn");
#endif
#ifdef USE_XNNPACK
static constexpr ORT_STRING_VIEW provider_name_xnnpack = ORT_TSTR("xnnpack");
#endif
static constexpr ORT_STRING_VIEW provider_name_dml = ORT_TSTR("dml");
::std::vector<::std::basic_string<ORTCHAR_T>> GetParameterStrings() {
// Map key is provider name(CPU, CUDA, etc). Value is the ONNX node tests' opsets to run.
std::map<ORT_STRING_VIEW, std::vector<ORT_STRING_VIEW>> provider_names;
// The default CPU provider always supports all opsets, and must maintain backwards compatibility.
provider_names[provider_name_cpu] = {opset7, opset8, opset9, opset10, opset11, opset12, opset13, opset14, opset15, opset16, opset17, opset18};
// The other EPs can choose which opsets to test.
// If an EP doesn't have any CI build pipeline, then there is no need to specify any opset.
#ifdef USE_TENSORRT
// tensorrt: only enable opset 12 to 17 of onnx tests
provider_names[provider_name_tensorrt] = {opset12, opset14, opset15, opset16, opset17};
#endif
#ifdef USE_MIGRAPHX
provider_names[provider_name_migraphx] = {opset7, opset8, opset9, opset10, opset11, opset12, opset13, opset14, opset15, opset16, opset17, opset18};
#endif
#ifdef USE_OPENVINO
provider_names[provider_name_openvino] = {};
#endif
#ifdef USE_CUDA
provider_names[provider_name_cuda] = {opset7, opset8, opset9, opset10, opset11, opset12, opset13, opset14, opset15, opset16, opset17, opset18};
#endif
#ifdef USE_ROCM
provider_names[provider_name_rocm] = {opset7, opset8, opset9, opset10, opset11, opset12, opset13, opset14, opset15, opset16, opset17, opset18};
#endif
#ifdef USE_DNNL
provider_names[provider_name_dnnl] = {opset10};
#endif
// For any non-Android system, NNAPI will only be used for ort model converter
#if defined(USE_NNAPI) && defined(__ANDROID__)
provider_names[provider_name_nnapi] = {opset7, opset8, opset9, opset10, opset11, opset12, opset13, opset14, opset15, opset16, opset17, opset18};
#endif
#ifdef USE_VSINPU
provider_names[provider_name_vsinpu] = {};
#endif
#ifdef USE_RKNPU
provider_names[provider_name_rknpu] = {};
#endif
#ifdef USE_ACL
provider_names[provider_name_acl] = {};
#endif
#ifdef USE_ARMNN
provider_names[provider_name_armnn] = {};
#endif
#ifdef USE_DML
provider_names[provider_name_dml] = {opset7, opset8, opset9, opset10, opset11, opset12, opset13, opset14, opset15, opset16, opset17, opset18};
#endif
#ifdef USE_XNNPACK
provider_names[provider_name_xnnpack] = {opset12, opset13, opset14, opset15, opset16, opset17, opset18};
#endif
#if defined(ENABLE_TRAINING_CORE) && defined(USE_CUDA)
// Removing the CPU EP tests from CUDA build for training as these tests are already run in the CPU pipelines.
// Note: These are inference tests, we run these in training builds as an extra check. Therefore reducing
// the number of times these are run to reduce the CI time.
provider_names.erase(provider_name_cpu);
#endif
std::vector<std::basic_string<ORTCHAR_T>> v;
// Permanently exclude following tests because ORT support only opset starting from 7,
// Please make no more changes to the list
static const ORTCHAR_T* immutable_broken_tests[] = {
ORT_TSTR("AvgPool1d"),
ORT_TSTR("AvgPool1d_stride"),
ORT_TSTR("AvgPool2d"),
ORT_TSTR("AvgPool2d_stride"),
ORT_TSTR("AvgPool3d"),
ORT_TSTR("AvgPool3d_stride"),
ORT_TSTR("AvgPool3d_stride1_pad0_gpu_input"),
ORT_TSTR("BatchNorm1d_3d_input_eval"),
ORT_TSTR("BatchNorm2d_eval"),
ORT_TSTR("BatchNorm2d_momentum_eval"),
ORT_TSTR("BatchNorm3d_eval"),
ORT_TSTR("BatchNorm3d_momentum_eval"),
ORT_TSTR("GLU"),
ORT_TSTR("GLU_dim"),
ORT_TSTR("Linear"),
ORT_TSTR("PReLU_1d"),
ORT_TSTR("PReLU_1d_multiparam"),
ORT_TSTR("PReLU_2d"),
ORT_TSTR("PReLU_2d_multiparam"),
ORT_TSTR("PReLU_3d"),
ORT_TSTR("PReLU_3d_multiparam"),
ORT_TSTR("PoissonNLLLLoss_no_reduce"),
ORT_TSTR("Softsign"),
ORT_TSTR("operator_add_broadcast"),
ORT_TSTR("operator_add_size1_broadcast"),
ORT_TSTR("operator_add_size1_right_broadcast"),
ORT_TSTR("operator_add_size1_singleton_broadcast"),
ORT_TSTR("operator_addconstant"),
ORT_TSTR("operator_addmm"),
ORT_TSTR("operator_basic"),
ORT_TSTR("operator_mm"),
ORT_TSTR("operator_non_float_params"),
ORT_TSTR("operator_params"),
ORT_TSTR("operator_pow"),
};
static const ORTCHAR_T* cuda_rocm_flaky_tests[] = {ORT_TSTR("fp16_inception_v1"),
ORT_TSTR("fp16_shufflenet"),
ORT_TSTR("fp16_tiny_yolov2"),
ORT_TSTR("candy"),
ORT_TSTR("tinyyolov3"),
ORT_TSTR("mlperf_ssd_mobilenet_300"),
ORT_TSTR("mlperf_ssd_resnet34_1200"),
ORT_TSTR("tf_inception_v1"),
ORT_TSTR("faster_rcnn"),
ORT_TSTR("split_zero_size_splits"),
ORT_TSTR("convtranspose_3d"),
ORT_TSTR("fp16_test_tiny_yolov2-Candy"),
ORT_TSTR("fp16_coreml_FNS-Candy"),
ORT_TSTR("fp16_test_tiny_yolov2"),
ORT_TSTR("fp16_test_shufflenet"),
ORT_TSTR("keras2coreml_SimpleRNN_ImageNet")};
// For ROCm EP, also disable the following tests due to flakiness,
// mainly with precision issue and random memory access fault.
static const ORTCHAR_T* rocm_disabled_tests[] = {ORT_TSTR("bvlc_alexnet"),
ORT_TSTR("bvlc_reference_caffenet"),
ORT_TSTR("bvlc_reference_rcnn_ilsvrc13"),
ORT_TSTR("coreml_Resnet50_ImageNet"),
ORT_TSTR("mlperf_resnet"),
ORT_TSTR("mobilenetv2-1.0"),
ORT_TSTR("shufflenet"),
// models from model zoo
ORT_TSTR("AlexNet"),
ORT_TSTR("CaffeNet"),
ORT_TSTR("MobileNet v2-7"),
ORT_TSTR("R-CNN ILSVRC13"),
ORT_TSTR("ShuffleNet-v1"),
ORT_TSTR("version-RFB-320"),
ORT_TSTR("version-RFB-640")};
static const ORTCHAR_T* openvino_disabled_tests[] = {
ORT_TSTR("tf_mobilenet_v1_1.0_224"),
ORT_TSTR("bertsquad"),
ORT_TSTR("yolov3"),
ORT_TSTR("LSTM_Seq_lens_unpacked"),
ORT_TSTR("tinyyolov3"),
// ORT_TSTR("faster_rcnn"),
ORT_TSTR("mask_rcnn"),
ORT_TSTR("coreml_FNS-Candy_ImageNet"),
ORT_TSTR("tf_mobilenet_v2_1.0_224"),
ORT_TSTR("tf_mobilenet_v2_1.4_224"),
ORT_TSTR("operator_permute2"),
ORT_TSTR("operator_repeat"),
ORT_TSTR("operator_repeat_dim_overflow"),
ORT_TSTR("mlperf_ssd_resnet34_1200"),
ORT_TSTR("candy"),
ORT_TSTR("cntk_simple_seg"),
// ORT_TSTR("GPT2_LM_HEAD"),
ORT_TSTR("mlperf_ssd_mobilenet_300"),
ORT_TSTR("fp16_coreml_FNS-Candy"),
ORT_TSTR("fp16_test_tiny_yolov2"),
ORT_TSTR("negative_log_likelihood_loss_input_shape_is_NCd1d2d3d4d5_mean_weight"),
ORT_TSTR("negative_log_likelihood_loss_input_shape_is_NCd1d2d3d4d5_mean_weight_expanded"),
ORT_TSTR("negative_log_likelihood_loss_input_shape_is_NCd1d2d3d4d5_none_no_weight"),
ORT_TSTR("negative_log_likelihood_loss_input_shape_is_NCd1d2d3d4d5_none_no_weight_expanded"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_mean_weight"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_mean_weight_expanded"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_mean_weight_log_prob"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_mean_weight_log_prob_expanded"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_none_no_weight"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_none_no_weight_expanded"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_none_no_weight_log_prob"),
ORT_TSTR("softmax_cross_entropy_input_shape_is_NCd1d2d3d4d5_none_no_weight_log_prob_expanded"),
// models from model zoo
ORT_TSTR("Tiny YOLOv3"),
ORT_TSTR("BERT-Squad"),
ORT_TSTR("YOLOv3"),
ORT_TSTR("Candy"),
ORT_TSTR("SSD"),
ORT_TSTR("ResNet101_DUC_HDC-12"),
ORT_TSTR("YOLOv3-12")};
static const ORTCHAR_T* dml_disabled_tests[] = {ORT_TSTR("mlperf_ssd_resnet34_1200"),
ORT_TSTR("mlperf_ssd_mobilenet_300"),
ORT_TSTR("mask_rcnn"),
ORT_TSTR("faster_rcnn"),
ORT_TSTR("tf_pnasnet_large"),
ORT_TSTR("zfnet512"),
ORT_TSTR("keras2coreml_Dense_ImageNet")};
static const ORTCHAR_T* dnnl_disabled_tests[] = {ORT_TSTR("densenet121"),
ORT_TSTR("resnet18v2"),
ORT_TSTR("resnet34v2"),
ORT_TSTR("resnet50v2"),
ORT_TSTR("resnet101v2"),
ORT_TSTR("resnet101v2"),
ORT_TSTR("vgg19"),
ORT_TSTR("tf_inception_resnet_v2"),
ORT_TSTR("tf_inception_v1"),
ORT_TSTR("tf_inception_v3"),
ORT_TSTR("tf_inception_v4"),
ORT_TSTR("tf_mobilenet_v1_1.0_224"),
ORT_TSTR("tf_mobilenet_v2_1.0_224"),
ORT_TSTR("tf_mobilenet_v2_1.4_224"),
ORT_TSTR("tf_nasnet_large"),
ORT_TSTR("tf_pnasnet_large"),
ORT_TSTR("tf_resnet_v1_50"),
ORT_TSTR("tf_resnet_v1_101"),
ORT_TSTR("tf_resnet_v1_101"),
ORT_TSTR("tf_resnet_v2_101"),
ORT_TSTR("tf_resnet_v2_152"),
ORT_TSTR("batchnorm_example_training_mode"),
ORT_TSTR("batchnorm_epsilon_training_mode"),
ORT_TSTR("mobilenetv2-1.0"),
ORT_TSTR("shufflenet"),
ORT_TSTR("candy"),
ORT_TSTR("range_float_type_positive_delta_expanded"),
ORT_TSTR("range_int32_type_negative_delta_expanded"),
ORT_TSTR("averagepool_2d_ceil"),
ORT_TSTR("maxpool_2d_ceil"),
ORT_TSTR("maxpool_2d_dilations"),
ORT_TSTR("mlperf_ssd_resnet34_1200"),
ORT_TSTR("convtranspose_1d"),
ORT_TSTR("convtranspose_3d"),
ORT_TSTR("maxpool_2d_uint8"),
ORT_TSTR("mul_uint8"),
ORT_TSTR("div_uint8")};
static const ORTCHAR_T* tensorrt_disabled_tests[] = {
ORT_TSTR("YOLOv3-12"), // needs to run symbolic shape inference shape first
ORT_TSTR("SSD-MobilenetV1-12"), // symbolic shape inference shape error
ORT_TSTR("SSD"), // needs to run symbolic shape inference shape first
ORT_TSTR("size") // INVALID_ARGUMENT: Cannot find binding of given name: x
};
std::vector<std::filesystem::path> paths;
for (std::pair<ORT_STRING_VIEW, std::vector<ORT_STRING_VIEW>> kvp : provider_names) {
const ORT_STRING_VIEW provider_name = kvp.first;
// Setup ONNX node tests. The test data is preloaded on our CI build machines.
#if !defined(_WIN32)
ORT_STRING_VIEW node_test_root_path = ORT_TSTR("/data/onnx");
#else
ORT_STRING_VIEW node_test_root_path = ORT_TSTR("c:\\local\\data\\onnx");
#endif
for (auto p : kvp.second) {
// tensorrt ep isn't expected to pass all onnx node tests. exclude and run model tests only.
if (provider_name != provider_name_tensorrt) {
paths.push_back(ConcatPathComponent(node_test_root_path, p));
}
}
// Same as the above, except this one is for large models
#if defined(NDEBUG) || defined(RUN_MODELTEST_IN_DEBUG_MODE)
#ifdef _WIN32
ORT_STRING_VIEW model_test_root_path = ORT_TSTR("..\\models");
// thus, only the root path should be mounted.
ORT_STRING_VIEW model_zoo_path = ORT_TSTR("..\\models\\zoo");
#else
ORT_STRING_VIEW model_test_root_path = ORT_TSTR("../models");
ORT_STRING_VIEW model_zoo_path = ORT_TSTR("../models/zoo");
#endif
for (auto p : kvp.second) {
paths.push_back(ConcatPathComponent(model_test_root_path, p));
paths.push_back(ConcatPathComponent(model_zoo_path, p));
}
#endif
std::unordered_set<std::basic_string<ORTCHAR_T>> all_disabled_tests(std::begin(immutable_broken_tests),
std::end(immutable_broken_tests));
bool provider_cuda_or_rocm = provider_name == provider_name_cuda;
if (provider_name == provider_name_rocm) {
provider_cuda_or_rocm = true;
all_disabled_tests.insert(std::begin(rocm_disabled_tests), std::end(rocm_disabled_tests));
}
if (provider_cuda_or_rocm) {
all_disabled_tests.insert(std::begin(cuda_rocm_flaky_tests), std::end(cuda_rocm_flaky_tests));
} else if (provider_name == provider_name_dml) {
all_disabled_tests.insert(std::begin(dml_disabled_tests), std::end(dml_disabled_tests));
} else if (provider_name == provider_name_dnnl) {
// these models run but disabled tests to keep memory utilization low
// This will be removed after LRU implementation
all_disabled_tests.insert(std::begin(dnnl_disabled_tests), std::end(dnnl_disabled_tests));
} else if (provider_name == provider_name_tensorrt) {
// these models run but disabled tests to keep memory utilization low
// This will be removed after LRU implementation
all_disabled_tests.insert(std::begin(tensorrt_disabled_tests), std::end(tensorrt_disabled_tests));
} else if (provider_name == provider_name_openvino) {
// these models run but disabled tests to keep memory utilization low
// This will be removed after LRU implementation
all_disabled_tests.insert(std::begin(openvino_disabled_tests), std::end(openvino_disabled_tests));
}
#if !defined(__amd64__) && !defined(_M_AMD64)
// out of memory
static const ORTCHAR_T* x86_disabled_tests[] = {ORT_TSTR("BERT_Squad"),
ORT_TSTR("bvlc_alexnet"),
ORT_TSTR("bvlc_reference_caffenet"),
ORT_TSTR("coreml_VGG16_ImageNet"),
ORT_TSTR("VGG 16-fp32"),
ORT_TSTR("VGG 19-caffe2"),
ORT_TSTR("VGG 19-bn"),
ORT_TSTR("VGG 16-bn"),
ORT_TSTR("VGG 19"),
ORT_TSTR("VGG 16"),
ORT_TSTR("faster_rcnn"),
ORT_TSTR("GPT2"),
ORT_TSTR("GPT2_LM_HEAD"),
ORT_TSTR("keras_lotus_resnet3D"),
ORT_TSTR("mlperf_ssd_resnet34_1200"),
ORT_TSTR("mask_rcnn_keras"),
ORT_TSTR("mask_rcnn"),
ORT_TSTR("ssd"),
ORT_TSTR("vgg19"),
ORT_TSTR("zfnet512"),
ORT_TSTR("ResNet101_DUC_HDC"),
ORT_TSTR("ResNet101_DUC_HDC-12"),
ORT_TSTR("FCN ResNet-101"),
ORT_TSTR("SSD")};
all_disabled_tests.insert(std::begin(x86_disabled_tests), std::end(x86_disabled_tests));
#endif
// fp16 models have different outputs with different kinds of hardware. We need to disable all fp16 models
all_disabled_tests.insert(ORT_TSTR("fp16_shufflenet"));
all_disabled_tests.insert(ORT_TSTR("fp16_inception_v1"));
all_disabled_tests.insert(ORT_TSTR("fp16_tiny_yolov2"));
while (!paths.empty()) {
std::filesystem::path node_data_root_path = paths.back();
paths.pop_back();
if (!std::filesystem::exists(node_data_root_path) || !std::filesystem::is_directory(node_data_root_path)) {
continue;
}
for (auto const& dir_entry : std::filesystem::directory_iterator(node_data_root_path)) {
if (dir_entry.is_directory()) {
paths.push_back(dir_entry.path());
continue;
}
const std::filesystem::path& path = dir_entry.path();
if (!path.has_filename() || path.filename().native().compare(0, 1, ORT_TSTR(".")) == 0) {
// Ignore hidden files.
continue;
}
if (path.filename().extension().compare(ORT_TSTR(".onnx")) != 0) {
// Ignore the files that are not ONNX models
continue;
}
std::basic_string<PATH_CHAR_TYPE> test_case_name = path.parent_path().filename().native();
if (test_case_name.compare(0, 5, ORT_TSTR("test_")) == 0)
test_case_name = test_case_name.substr(5);
if (all_disabled_tests.find(test_case_name) != all_disabled_tests.end())
continue;
#ifdef DISABLE_ML_OPS
auto starts_with = [](const std::basic_string<PATH_CHAR_TYPE>& find_in,
const std::basic_string<PATH_CHAR_TYPE>& find_what) {
return find_in.compare(0, find_what.size(), find_what) == 0;
};
if (starts_with(test_case_name, ORT_TSTR("XGBoost_")) || starts_with(test_case_name, ORT_TSTR("coreml_")) ||
starts_with(test_case_name, ORT_TSTR("scikit_")) || starts_with(test_case_name, ORT_TSTR("libsvm_"))) {
continue;
}
#endif
std::basic_ostringstream<PATH_CHAR_TYPE> oss;
oss << provider_name << ORT_TSTR("_") << path.native();
v.emplace_back(oss.str());
}
}
}
return v;
}
auto ExpandModelName = [](const ::testing::TestParamInfo<ModelTest::ParamType>& info) {
// use info.param here to generate the test suffix
std::basic_string<ORTCHAR_T> name = info.param;
// the original name here is the combination of provider name and model path name
// remove the trailing 'xxxxxxx/model.onnx' of name
if (name.size() > 11 && name.substr(name.size() - 11) == ORT_TSTR("/model.onnx")) {
name = name.substr(0, info.param.size() - 11);
}
// remove the trailing 'xxxxxx.onnx' of name
else if (name.size() > 5 && name.substr(name.size() - 5) == ORT_TSTR(".onnx")) {
name = name.substr(0, info.param.size() - 5);
}
// Note: test name only accepts '_' and alphanumeric
// replace '/' or '\' with '_'
std::replace(name.begin(), name.end(), '/', '_');
std::replace(name.begin(), name.end(), '\\', '_');
// in case there's whitespace in directory name
std::replace(name.begin(), name.end(), ' ', '_');
// Note: test name only accepts '_' and alphanumeric
// remove '.', '-', ':'
char chars[] = ".-:()";
for (unsigned int i = 0; i < strlen(chars); ++i) {
name.erase(std::remove(name.begin(), name.end(), chars[i]), name.end());
}
#ifdef _WIN32
// Note: The return value of INSTANTIATE_TEST_SUITE_P accepts std::basic_string<char...>.
// Need conversion of wchar_t to char.
return std::wstring_convert<std::codecvt_utf8<wchar_t>>().to_bytes(name);
#else
return name;
#endif
};
// The optional last argument is a function or functor that generates custom test name suffixes based on the test
// parameters. Specify the last argument to make test name more meaningful and clear instead of just the sequential
// number.
INSTANTIATE_TEST_SUITE_P(ModelTests, ModelTest, testing::ValuesIn(GetParameterStrings()), ExpandModelName);
} // namespace test
} // namespace onnxruntime