-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconfiguration-aml.variables.yml
52 lines (42 loc) · 2.14 KB
/
configuration-aml.variables.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# Definition of AML-related environment variables
# There are two versions: One is for using multiple classifiers. The other is for using one best classifier.
# If the data scientist has already picked a best classifier, you can change CLASSIFIER_NUMBER to 1
# to use "train_1_classifier.py". Otherwise, you can change CLASSIFIER_NUMBER to n to
# use "train_n_classifier.py" which will use and compare multiple classifers and will automatically pick up the best one for you.
# You can change the variable names to fit your naming convention.
variables:
PYTHON_VERSION: 3.7
SDK_VERSION: 1.27
# Input data
AML_DATASET: two_class
KEEP_COLUMNS: Helpfulness_Score|Score|Text|Target
TARGET_COLUMN: Target
# The value for the true or positive case should go first!!!
TARGET_VALUES: toys games|not a toy/game
TEXT_COLUMNS: Text
# The number of folds to be used in the cross validation: 1-10
FOLD_NUMBER: 4
# The number of classifiers to be used in the model training: 1 or n
CLASSIFIER_NUMBER: 1
# Training
TRAINING_SCRIPT_NAME: train_$(CLASSIFIER_NUMBER)_classifier.py
AML_MODEL_NAME: two_class_$(CLASSIFIER_NUMBER).pkl
AML_TRAINING_EXPERIMENT: two-class-$(CLASSIFIER_NUMBER)-experiment
AML_TRAINING_PIPELINE: two-class-$(CLASSIFIER_NUMBER)-pipeline
AML_TRAINING_COMPUTE: cpucompute
AML_TRAINING_ENV_PATH: configuration/environments/environment_training
TRAINING_MODEL_METRIC_NAME: Recall
TRAINING_MAXIMIZE: True
# Batch inference
AML_BATCHINFERENCE_EXPERIMENT: two-class-$(CLASSIFIER_NUMBER)-bi-experiment
AML_BATCHINFERENCE_PIPELINE: two-class-$(CLASSIFIER_NUMBER)-bi-pipeline
AML_BATCHINFERENCE_COMPUTE: $(AML_TRAINING_COMPUTE)
AML_BATCHINFERENCE_ENV_PATH: configuration/environments/environment_inference
BATCHINFERENCE_OUTPUT_DIR: forecasting_results
BATCHINFERENCE_OUTPUT_CONTAINER: modelprediction
# Real-time inference
AML_REALTIMEINFERENCE_ENV_PATH: $(AML_BATCHINFERENCE_ENV_PATH)
AKS_COMPUTE: aks-compute
AML_WEBSERVICE: two-class-$(CLASSIFIER_NUMBER)-webservice