-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathstep4_model_ensemble.py
263 lines (196 loc) · 12.6 KB
/
step4_model_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#
# model_ensemble.py
#
# Train the ensemble model
#
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#
#%% Imports
from sklearn.model_selection import train_test_split
import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Keras imports
from keras.models import model_from_json
from scipy import optimize
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import auc
#%% Path configuration
current_dir = "./Whale_Acoustics/"
model_dir = current_dir + "Model/"
data_dir = current_dir + "Data/"
output_dir = current_dir + 'Output/'
spectrogram_dir = data_dir + "Extracted_Spectrogram/"
output_spectrogram_vector_dir = "Output_Spectrogram_Vector/"
#%% Step 1: train/validation/test split
ncol, nrow = 300, 300
spectrograms_B_sample = np.load(data_dir + output_spectrogram_vector_dir + "spectrograms_B_sample_300_300.npy")
spectrograms_F_sample = np.load(data_dir + output_spectrogram_vector_dir + "spectrograms_F_sample_300_300.npy")
spectrograms_N_sample = np.load(data_dir + output_spectrogram_vector_dir + "spectrograms_N_sample_300_300.npy")
filenames_B_sample = []
with open(data_dir + output_spectrogram_vector_dir + "filenames_B_sample.csv", newline='') as f:
for row in csv.reader(f):
filenames_B_sample.append(row[0])
filenames_F_sample = []
with open(data_dir + output_spectrogram_vector_dir + "filenames_F_sample.csv", newline='') as f:
for row in csv.reader(f):
filenames_F_sample.append(row[0])
filenames_N_sample = []
with open(data_dir + output_spectrogram_vector_dir + "filenames_N_sample.csv", newline='') as f:
for row in csv.reader(f):
filenames_N_sample.append(row[0])
spectrograms_B_train_validation, spectrograms_B_test, filenames_B_train_validation, filenames_B_test = train_test_split(spectrograms_B_sample, filenames_B_sample, test_size = 0.3, random_state = 1)
spectrograms_F_train_validation, spectrograms_F_test, filenames_F_train_validation, filenames_F_test = train_test_split(spectrograms_F_sample, filenames_F_sample, test_size = 0.3, random_state = 1)
spectrograms_N_train_validation, spectrograms_N_test, filenames_N_train_validation, filenames_N_test = train_test_split(spectrograms_N_sample, filenames_N_sample, test_size = 0.3, random_state = 1)
spectrograms_train_validation = np.concatenate((spectrograms_B_train_validation, spectrograms_F_train_validation, spectrograms_N_train_validation), axis=0)
labels_train_validation = np.array([1] * len(spectrograms_B_train_validation) + [0] * len(spectrograms_F_train_validation) + [0] * len(spectrograms_N_train_validation))
X_train, X_validation, y_train, y_validation = train_test_split(spectrograms_train_validation, labels_train_validation, test_size = 0.3, random_state = 1)
X_train = X_train / 255.0
X_validation = X_validation / 255.0
print(X_train.shape)
print(X_validation.shape)
print(spectrograms_B_test.shape)
print(spectrograms_F_test.shape)
print(spectrograms_N_test.shape)
#%% Step 2: load models
with open(model_dir + 'cnn_architecture_all_data.json', 'r') as f:
model_cnn = model_from_json(f.read())
model_cnn.load_weights(model_dir + 'cnn_weights_all_data.h5')
with open(model_dir + 'vgg16_architecture_all_data.json', 'r') as f:
model_vgg16 = model_from_json(f.read())
model_vgg16.load_weights(model_dir + 'vgg16_weights_all_data.h5')
with open(model_dir + 'ResNet50_architecture_all_data.json', 'r') as f:
model_ResNet50 = model_from_json(f.read())
model_ResNet50.load_weights(model_dir + 'ResNet50_weights_all_data.h5')
with open(model_dir + 'DenseNet121_architecture_all_data.json', 'r') as f:
model_DenseNet121 = model_from_json(f.read())
model_DenseNet121.load_weights(model_dir + 'DenseNet121_weights_all_data.h5')
#%% Step 3: predict on the validation and test sets
validation_predict_cnn = model_cnn.predict(X_validation)
validation_predict_cnn = [x for sublist in validation_predict_cnn.tolist() for x in sublist]
validation_predict_vgg16 = model_vgg16.predict(X_validation)
validation_predict_vgg16 = [x for sublist in validation_predict_vgg16.tolist() for x in sublist]
validation_predict_ResNet50 = model_ResNet50.predict(X_validation)
validation_predict_ResNet50 = [x for sublist in validation_predict_ResNet50.tolist() for x in sublist]
validation_predict_DenseNet121 = model_DenseNet121.predict(X_validation)
validation_predict_DenseNet121 = [x for sublist in validation_predict_DenseNet121.tolist() for x in sublist]
validation_predict = [validation_predict_cnn, validation_predict_vgg16, validation_predict_ResNet50, validation_predict_DenseNet121]
# Optimize weights for each model
def f(weights):
validation_predict_ensemble = np.average(validation_predict, axis=0, weights=weights)
validation_predict_ensemble_class = [int(validation_predict_ensemble[i] > 0.5) for i in range(len(validation_predict_ensemble))]
return validation_predict_ensemble_class
def loss_function(weights):
validation_predict_ensemble_class = f(weights)
n_lost = [prediction != label for prediction, label in zip(validation_predict_ensemble_class, y_validation)]
return np.sum(n_lost) / len(y_validation)
model_cnt = 4 # the number of models for ensembling
opt_weights = optimize.minimize(loss_function,
[1/ model_cnt] * model_cnt,
constraints=({'type': 'eq','fun': lambda w: 1-sum(w)}),
method= 'Nelder-Mead', #'SLSQP',
bounds=[(0.0, 1.0)] * model_cnt,
options = {'ftol':1e-3},
)['x']
print('Optimum weights = ', opt_weights, 'with loss', loss_function(opt_weights))
# Save the optimal weights of each individual model
opt_weights[-1] = 1.0 - sum(opt_weights[:-1]) ## to force the total weights sums up to 1
pd.DataFrame(opt_weights).to_excel(output_dir + 'opt_weights.xlsx', header=False, index=False)
del X_train
del X_validation
del spectrograms_train_validation
del spectrograms_B_train_validation
del spectrograms_F_train_validation
del spectrograms_N_train_validation
del spectrograms_B_sample
del spectrograms_F_sample
del spectrograms_N_sample
############### CNN: prediction ##############
spectrograms_B_test_predict_cnn = model_cnn.predict(spectrograms_B_test / 255.0)
spectrograms_B_test_predict_cnn = [x for sublist in spectrograms_B_test_predict_cnn.tolist() for x in sublist]
spectrograms_F_test_predict_cnn = model_cnn.predict(spectrograms_F_test / 255.0)
spectrograms_F_test_predict_cnn = [x for sublist in spectrograms_F_test_predict_cnn.tolist() for x in sublist]
spectrograms_N_test_predict_cnn = model_cnn.predict(spectrograms_N_test / 255.0)
spectrograms_N_test_predict_cnn = [x for sublist in spectrograms_N_test_predict_cnn.tolist() for x in sublist]
############### VGG16: prediction ##############
spectrograms_B_test_predict_vgg16 = model_vgg16.predict(spectrograms_B_test / 255.0)
spectrograms_B_test_predict_vgg16 = [x for sublist in spectrograms_B_test_predict_vgg16.tolist() for x in sublist]
spectrograms_F_test_predict_vgg16 = model_vgg16.predict(spectrograms_F_test / 255.0)
spectrograms_F_test_predict_vgg16 = [x for sublist in spectrograms_F_test_predict_vgg16.tolist() for x in sublist]
spectrograms_N_test_predict_vgg16 = model_vgg16.predict(spectrograms_N_test / 255.0)
spectrograms_N_test_predict_vgg16 = [x for sublist in spectrograms_N_test_predict_vgg16.tolist() for x in sublist]
############### ResNet50: prediction ##############
spectrograms_B_test_predict_ResNet50 = model_ResNet50.predict(spectrograms_B_test / 255.0)
spectrograms_B_test_predict_ResNet50 = [x for sublist in spectrograms_B_test_predict_ResNet50.tolist() for x in sublist]
spectrograms_F_test_predict_ResNet50 = model_ResNet50.predict(spectrograms_F_test / 255.0)
spectrograms_F_test_predict_ResNet50 = [x for sublist in spectrograms_F_test_predict_ResNet50.tolist() for x in sublist]
spectrograms_N_test_predict_ResNet50 = model_ResNet50.predict(spectrograms_N_test / 255.0)
spectrograms_N_test_predict_ResNet50 = [x for sublist in spectrograms_N_test_predict_ResNet50.tolist() for x in sublist]
############### DenseNet121: prediction ##############
spectrograms_B_test_predict_DenseNet121 = model_DenseNet121.predict(spectrograms_B_test / 255.0)
spectrograms_B_test_predict_DenseNet121 = [x for sublist in spectrograms_B_test_predict_DenseNet121.tolist() for x in sublist]
spectrograms_F_test_predict_DenseNet121 = model_DenseNet121.predict(spectrograms_F_test / 255.0)
spectrograms_F_test_predict_DenseNet121 = [x for sublist in spectrograms_F_test_predict_DenseNet121.tolist() for x in sublist]
spectrograms_N_test_predict_DenseNet121 = model_DenseNet121.predict(spectrograms_N_test / 255.0)
spectrograms_N_test_predict_DenseNet121 = [x for sublist in spectrograms_N_test_predict_DenseNet121.tolist() for x in sublist]
############### emsemble: prediction ##############
spectrograms_B_test_predict = [spectrograms_B_test_predict_cnn, spectrograms_B_test_predict_vgg16, spectrograms_B_test_predict_ResNet50, spectrograms_B_test_predict_DenseNet121]
spectrograms_B_test_predict_ensemble = np.average(spectrograms_B_test_predict, axis=0, weights = opt_weights)
spectrograms_B_test_predict_ensemble_wrong_predictions = [i for i,v in enumerate(spectrograms_B_test_predict_ensemble) if v < 0.5]
plt.hist(spectrograms_B_test_predict_ensemble)
spectrograms_F_test_predict = [spectrograms_F_test_predict_cnn, spectrograms_F_test_predict_vgg16, spectrograms_F_test_predict_ResNet50, spectrograms_F_test_predict_DenseNet121]
spectrograms_F_test_predict_ensemble = np.average(spectrograms_F_test_predict, axis=0, weights = opt_weights)
spectrograms_F_test_predict_ensemble_wrong_predictions = [i for i,v in enumerate(spectrograms_F_test_predict_ensemble) if v > 0.5]
plt.hist(spectrograms_F_test_predict_ensemble)
spectrograms_N_test_predict = [spectrograms_N_test_predict_cnn, spectrograms_N_test_predict_vgg16, spectrograms_N_test_predict_ResNet50, spectrograms_N_test_predict_DenseNet121]
spectrograms_N_test_predict_ensemble = np.average(spectrograms_N_test_predict, axis=0, weights = opt_weights)
spectrograms_N_test_predict_ensemble_wrong_predictions = [i for i,v in enumerate(spectrograms_N_test_predict_ensemble) if v > 0.5]
plt.hist(spectrograms_N_test_predict_ensemble)
print(1 - len(spectrograms_B_test_predict_ensemble_wrong_predictions) / len(spectrograms_B_test)) ## 92.26%
print(1 - len(spectrograms_F_test_predict_ensemble_wrong_predictions) / len(spectrograms_F_test)) ## 98.36%
print(1 - len(spectrograms_N_test_predict_ensemble_wrong_predictions) / len(spectrograms_N_test)) ## 99.9%
print(len(spectrograms_B_test_predict_ensemble_wrong_predictions))
print(len(spectrograms_F_test_predict_ensemble_wrong_predictions))
print(len(spectrograms_N_test_predict_ensemble_wrong_predictions))
plt.hist(spectrograms_B_test_predict_ensemble)
plt.xlabel('Predicted Probability')
plt.ylabel('Count of Spectrograms')
plt.hist(spectrograms_F_test_predict_ensemble)
plt.xlabel('Predicted Probability')
plt.ylabel('Count of Spectrograms')
plt.hist(spectrograms_B_test_predict_ensemble[spectrograms_B_test_predict_ensemble_wrong_predictions])
plt.hist(spectrograms_F_test_predict_ensemble[spectrograms_F_test_predict_ensemble_wrong_predictions])
plt.hist(spectrograms_N_test_predict_ensemble[spectrograms_N_test_predict_ensemble_wrong_predictions])
tp = len([i for i,v in enumerate(spectrograms_B_test_predict_ensemble) if v >= 0.5])
fn = len([i for i,v in enumerate(spectrograms_B_test_predict_ensemble) if v < 0.5])
tn = len([i for i,v in enumerate(spectrograms_F_test_predict_ensemble) if v < 0.5])
fp = len([i for i,v in enumerate(spectrograms_F_test_predict_ensemble) if v >= 0.5])
precision = tp / (tp + fp)
recall = tp / (tp + fn)
accuracy = (tp + tn) / (tp + fp + tn + fn)
y_true = [1] * len(spectrograms_B_test_predict_ensemble) + [0] * len(spectrograms_F_test_predict_ensemble)
y_scores = spectrograms_B_test_predict_ensemble.tolist() + spectrograms_F_test_predict_ensemble.tolist()
# Calculate ROC and AUC
AUC = roc_auc_score(y_true, y_scores)
print('AUC: %.4f' % AUC)
# Calculate ROC Curve
fpr, tpr, thresholds = roc_curve(y_true, y_scores)
plt.plot(fpr, tpr, marker='.')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.legend()
plt.show()
# Calculate precision-recall curve
precision, recall, thresholds = precision_recall_curve(y_true, y_scores)
precision_recall_auc = auc(recall, precision)
print('Precesion Recall AUC: %.4f' % precision_recall_auc)
# Plot precision-recall curve
plt.plot(recall, precision, marker='.')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.legend()
plt.show()