-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathrunner.py
executable file
·633 lines (514 loc) · 25.5 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
DeepSpeed runner is the main front-end to launching multi-worker
training jobs with DeepSpeed. By default this uses pdsh to parallel
ssh into multiple worker nodes and launch all the necessary processes
per rank for training.
"""
import os
import re
import sys
import json
import base64
import argparse
import subprocess
import collections
from copy import deepcopy
import signal
import time
from typing import Tuple, List, Dict
from collections import defaultdict
import shlex
from .multinode_runner import PDSHRunner, OpenMPIRunner, MVAPICHRunner, SlurmRunner, MPICHRunner, IMPIRunner
from .constants import PDSH_LAUNCHER, OPENMPI_LAUNCHER, MVAPICH_LAUNCHER, SLURM_LAUNCHER, MPICH_LAUNCHER, IMPI_LAUNCHER
from ..constants import TORCH_DISTRIBUTED_DEFAULT_PORT
from ..nebula.constants import NEBULA_EXPORT_ENVS
from ..utils import logger
from ..autotuning import Autotuner
from deepspeed.accelerator import get_accelerator
DLTS_HOSTFILE = "/job/hostfile"
EXPORT_ENVS = ['MLFLOW', 'PYTHON', 'MV2', 'UCX']
EXPORT_ENVS += NEBULA_EXPORT_ENVS
DEEPSPEED_ENVIRONMENT_NAME = os.getenv("DS_ENV_FILE", ".deepspeed_env")
DEEPSPEED_ENVIRONMENT_PATHS = [os.path.expanduser("~"), '.']
PDSH_MAX_FAN_OUT = 1024
# On AISC compute, each node sets environment variables independently, want to prevent
# exporting rank-0 env variables in case of heterogeneous compute.
EXCLUDE_ENVS = {'AISC_JOB_NAME': ['NCCL_IB_HCA', 'UCX_NET_DEVICES']}
def parse_args(args=None):
parser = argparse.ArgumentParser(description="DeepSpeed runner to help launch distributed "
"multi-node/multi-gpu training jobs.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-H",
"--hostfile",
type=str,
default=DLTS_HOSTFILE,
help="Hostfile path (in MPI style) that defines the "
"resource pool available to the job (e.g., "
"worker-0 slots=4)")
parser.add_argument("-i",
"--include",
type=str,
default="",
help='''Specify hardware resources to use during execution.
String format is
NODE_SPEC[@NODE_SPEC ...],
where
NODE_SPEC=NAME[:SLOT[,SLOT ...]].
If :SLOT is omitted, include all slots on that host.
Example: -i "worker-0@worker-1:0,2" will use all slots
on worker-0 and slots [0, 2] on worker-1.
''')
parser.add_argument("-e",
"--exclude",
type=str,
default="",
help='''Specify hardware resources to NOT use during execution.
Mutually exclusive with --include. Resource formatting
is the same as --include.
Example: -e "worker-1:0" will use all available
resources except slot 0 on worker-1.
''')
parser.add_argument("--num_nodes",
type=int,
default=-1,
help="Total number of worker nodes to run on, this will use "
"the top N hosts from the given hostfile.")
parser.add_argument("--min_elastic_nodes",
type=int,
default=-1,
help="Minimum number of nodes to run elastic training on. "
"Default is 1 when elastic training is enabled")
parser.add_argument("--max_elastic_nodes",
type=int,
default=-1,
help="Maximum number of nodes to run elastic training on. "
"Default is num_nodes when elastic training is enabled")
parser.add_argument("--num_gpus",
"--num_accelerators",
type=int,
default=-1,
help="Max number of GPUs to use on each node, will use "
"[0:N) GPU ids on each node.")
parser.add_argument("--master_port",
default=TORCH_DISTRIBUTED_DEFAULT_PORT,
type=int,
help="(optional) Port used by PyTorch distributed for "
"communication during training.")
parser.add_argument("--master_addr",
default="",
type=str,
help="(optional) IP address of node 0, will be "
"inferred via 'hostname -I' if not specified.")
parser.add_argument("--node_rank",
default=-1,
type=int,
help="ID of each node in the range [0:N). "
"Only required when --no_ssh is set.")
parser.add_argument("--launcher",
default=PDSH_LAUNCHER,
type=str,
help="(optional) choose launcher backend for multi-node "
"training. Options currently include PDSH, OpenMPI, MVAPICH, SLURM, MPICH, IMPI.")
parser.add_argument("--launcher_args",
default="",
type=str,
help="(optional) pass launcher specific arguments as a "
"single quoted argument.")
parser.add_argument("--module",
action="store_true",
help="Change each process to interpret the launch "
"script as a Python module, executing with the same "
"behavior as 'python -m'.")
parser.add_argument("--no_python",
action="store_true",
help="Skip prepending the training script with "
"'python' - just execute it directly.")
parser.add_argument("--no_local_rank",
action="store_true",
help="Do not pass local_rank as an argument when calling "
"the user's training script.")
parser.add_argument("--no_ssh",
action="store_true",
help="Launch training independently on each node without ssh setup.")
parser.add_argument("--no_ssh_check",
action="store_true",
help="Do not perform ssh check in multi-node launcher model")
parser.add_argument("--force_multi",
action="store_true",
help="Force multi-node launcher mode, helps in cases where user "
"wants to launch on single remote node.")
parser.add_argument("--save_pid",
action="store_true",
help="Save file containing launcher process id (pid) at /tmp/<main-pid>.ds, "
"where <main-pid> is the pid of the first process that invoked `deepspeed`. "
"Useful when launching deepspeed processes programmatically.")
parser.add_argument("--enable_each_rank_log",
default="None",
type=str,
help="redirect the stdout and stderr from each rank into different log files")
parser.add_argument("--autotuning",
default="",
choices=["tune", "run"],
type=str,
help="Run DeepSpeed autotuner to discover optimal configuration parameters "
"before running job.")
parser.add_argument("--elastic_training",
action="store_true",
help="Enable elastic training support in DeepSpeed.")
parser.add_argument("user_script", type=str, help="User script to launch, followed by any required "
"arguments.")
parser.add_argument('user_args', nargs=argparse.REMAINDER)
parser.add_argument("--bind_cores_to_rank",
action="store_true",
help="Bind each rank to different cores of the host")
parser.add_argument("--bind_core_list",
type=str,
default=None,
help="List of cores to bind to with comma separated list of "
"numbers and range. i.e. 1,3-5,7 => [1,3,4,5,7]. When not "
"specified, all cores on system would be used rank binding")
parser.add_argument("--ssh_port", type=int, default=None, help="SSH port to use for remote connections")
return parser.parse_args(args=args)
def fetch_hostfile(hostfile_path):
if not os.path.isfile(hostfile_path):
logger.warning("Unable to find hostfile, will proceed with training "
"with local resources only.")
return None
# e.g., worker-0 slots=16
with open(hostfile_path, 'r') as fd:
hostfile_text = fd.readlines()
return _parse_hostfile(hostfile_text)
def _parse_hostfile(hostfile_lines):
# Regex matches one or more non-whitespace characters (\S+) at the start of
# the line, followed by one or more whitespace characters (\s+), followed
# by the string "slots=", followed by one or more digits (\d+).
pattern = r'^(\S+)\s+slots=(\d+)'
resource_pool = collections.OrderedDict()
for line in hostfile_lines:
line = line.strip()
match = re.search(pattern, line)
if line.startswith("#") or line == "":
# hostfile comment or empty line, ignore
continue
elif match:
host = match.group(1)
num_slots = int(match.group(2))
if host in resource_pool:
logger.error(f"Bad hostfile text: {hostfile_lines}")
raise ValueError(f"Hostfile contains multiple entries for {host}, unable to proceed with launching")
resource_pool[host] = num_slots
else:
logger.error(f"Bad hostfile text: {hostfile_lines}")
raise ValueError(f"Hostfile contains a bad entry: {line}, unable to proceed with launching")
if len(resource_pool) == 0:
logger.error(f"Bad hostfile text: {hostfile_lines}")
raise ValueError("Hostfile is empty or not formatted correctly, unable to proceed with launching.")
return resource_pool
def _stable_remove_duplicates(data):
# Create a new list in the same order as original but with duplicates
# removed, should never be more than ~16 elements so simple is best
new_list = []
for x in data:
if x not in new_list:
new_list.append(x)
return new_list
def parse_node_config(node_config: str) -> Tuple[str, List[int]]:
SLOT_LIST_START = ':'
SLOT_SEP = ','
if SLOT_LIST_START not in node_config:
return node_config, []
hostname, slots = node_config.split(SLOT_LIST_START)
slots = [int(x) for x in slots.split(SLOT_SEP)]
return hostname, slots
def parse_node_config_list(node_config_list: List[str]) -> Dict[str, List[int]]:
NODE_SEP = '@'
node_configs = defaultdict(list)
for node_config in node_config_list.split(NODE_SEP):
hostname, slots = parse_node_config(node_config)
node_configs[hostname] += slots
return {k: sorted(list(set(v))) for k, v in node_configs.items()}
def parse_resource_filter(host_info, include_str="", exclude_str=""):
'''Parse an inclusion or exclusion string and filter a hostfile dictionary.
String format is NODE_SPEC[@NODE_SPEC ...], where
NODE_SPEC = NAME[:SLOT[,SLOT ...]].
If :SLOT is omitted, include/exclude all slots on that host.
Examples:
include_str="worker-0@worker-1:0,2" will use all slots on worker-0 and
slots [0, 2] on worker-1.
exclude_str="worker-1:0" will use all available resources except
slot 0 on worker-1.
'''
# Ensure include/exclude are mutually exclusive
if (include_str != "") and (exclude_str != ""):
raise ValueError('include_str and exclude_str are mutually exclusive.')
# no-op
if (include_str == "") and (exclude_str == ""):
return host_info
# Either build from scratch or remove items
filtered_hosts = dict()
if include_str:
parse_str = include_str
if exclude_str != "":
filtered_hosts = deepcopy(host_info)
parse_str = exclude_str
# foreach node in the list
for hostname, slots in parse_node_config_list(parse_str).items():
# Node can either be alone or node:slot,slot,slot
if len(slots) > 0:
# sanity checks
if hostname not in host_info:
raise ValueError(f"Hostname '{hostname}' not found in hostfile")
for slot in slots:
if slot not in host_info[hostname]:
raise ValueError(f"No slot '{slot}' specified on host '{hostname}'")
# If include string, build the list from here
if include_str:
filtered_hosts[hostname] = slots
elif exclude_str:
for slot in slots:
logger.info(f'removing {slot} from {hostname}')
filtered_hosts[hostname].remove(slot)
# User just specified the whole node
else:
# sanity check hostname
if hostname not in host_info:
raise ValueError(f"Hostname '{hostname}' not found in hostfile")
if include_str:
filtered_hosts[hostname] = host_info[hostname]
elif exclude_str:
filtered_hosts[hostname] = []
# Post-processing to remove duplicates and empty nodes
del_keys = []
for hostname in filtered_hosts:
# Remove duplicates
filtered_hosts[hostname] = _stable_remove_duplicates(filtered_hosts[hostname])
# Remove empty hosts
if len(filtered_hosts[hostname]) == 0:
del_keys.append(hostname)
for name in del_keys:
del filtered_hosts[name]
# Lastly, go over filtered_hosts and convert to a OrderedDict() to ensure
# we map ranks to nodes correctly by maintaining host_info ordering.
ordered_hosts = collections.OrderedDict()
for host in host_info:
if host in filtered_hosts:
ordered_hosts[host] = filtered_hosts[host]
return ordered_hosts
def parse_inclusion_exclusion(resource_pool, inclusion, exclusion):
active_resources = collections.OrderedDict()
node_configs = parse_node_config_list(inclusion)
for hostname, slots in resource_pool.items():
active_resources[hostname] = node_configs[hostname] if hostname in node_configs else list(range(slots))
return parse_resource_filter(active_resources, include_str=inclusion, exclude_str=exclusion)
def encode_world_info(world_info):
world_info_json = json.dumps(world_info).encode('utf-8')
world_info_base64 = base64.urlsafe_b64encode(world_info_json).decode('utf-8')
return world_info_base64
def run_autotuning(args, active_resources):
tuner = Autotuner(args, active_resources)
logger.info("[Start] Running autotuning")
tuner.tune()
tuner.print_tuning_results()
logger.info("[End] Running autotuning")
tuner.write_optimal_config()
if args.autotuning == "run":
tuner.run_after_tuning()
def parse_num_nodes(str_num_nodes: str, elastic_training: bool):
node_list = str_num_nodes.split(":")
if len(node_list) == 1:
min_nodes, max_nodes = int(node_list[0]), -1
elif len(node_list) == 2 and elastic_training:
min_nodes, max_nodes = int(node_list[0]), int(node_list[1])
elif len(node_list) == 2 and not elastic_training:
raise RuntimeError("MIN:MAX format is only supported in elastic training")
else:
raise RuntimeError("num_nodes {} is not in MIN:MAX format".format(str_num_nodes))
return min_nodes, max_nodes
def main(args=None):
args = parse_args(args)
if args.elastic_training:
assert args.master_addr != "", "Master Addr is required when elastic training is enabled"
resource_pool = fetch_hostfile(args.hostfile)
# respect VISIBLE_DEVICES for a single node and no explicit resource filters
visible_devices_env = get_accelerator().visible_devices_envs()[0]
visible_devices = os.environ.get(visible_devices_env, "")
if not resource_pool and len(visible_devices):
detected_str = f"Detected VISIBLE_DEVICES={visible_devices}"
if len(args.include) or len(args.exclude) or args.num_nodes > 1 or args.num_gpus > 0:
print(
f"{detected_str} but ignoring it because one or several of --include/--exclude/--num_gpus/--num_nodes cl args were used. If you want to use CUDA_VISIBLE_DEVICES don't pass any of these arguments to deepspeed."
)
else:
args.include = f"localhost:{visible_devices}"
print(f"{detected_str}: setting --include={args.include}")
del os.environ[visible_devices_env]
if args.num_nodes >= 0 or args.num_gpus >= 0:
if args.include != "" or args.exclude != "":
raise ValueError("Cannot specify num_nodes/gpus with include/exclude")
multi_node_exec = True
if not resource_pool:
resource_pool = {}
device_count = get_accelerator().device_count()
if device_count == 0:
raise RuntimeError("Unable to proceed, no GPU resources available")
resource_pool['localhost'] = device_count
args.master_addr = "127.0.0.1"
multi_node_exec = False
if not multi_node_exec and args.num_nodes > 1:
raise ValueError("Num nodes is >1 but no extra nodes available via hostfile")
active_resources = parse_inclusion_exclusion(resource_pool, args.include, args.exclude)
env = os.environ.copy()
# validate that passwordless-ssh is workly properly with this hostfile
if multi_node_exec and not args.no_ssh_check and not args.no_ssh:
first_host = list(active_resources.keys())[0]
try:
ssh_check_cmd = "ssh -o PasswordAuthentication=no "
if args.ssh_port is not None:
ssh_check_cmd += f"-p {args.ssh_port} "
ssh_check_cmd += f"{first_host} hostname"
safe_ssh_cmd = shlex.split(ssh_check_cmd)
subprocess.check_call(safe_ssh_cmd, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL)
except subprocess.CalledProcessError:
raise RuntimeError(
f"Using hostfile at {args.hostfile} but host={first_host} was not reachable via ssh. If you are running with a single node please remove {args.hostfile} or setup passwordless ssh."
)
if not args.master_addr:
assert multi_node_exec
first_host = list(active_resources.keys())[0]
ssh_check_cmd = "ssh "
if args.ssh_port is not None:
ssh_check_cmd += f" -p {args.ssh_port}"
ssh_check_cmd += f" {first_host} hostname -I"
hostname_cmd = shlex.split(ssh_check_cmd)
try:
result = subprocess.check_output(hostname_cmd)
except subprocess.CalledProcessError as err:
logger.error(
"Unable to detect suitable master address via `hostname -I`, please manually specify one via --master_addr"
)
raise err
args.master_addr = result.decode('utf-8').split()[0]
if not args.master_addr:
raise RuntimeError(
f"Unable to detect suitable master address via `hostname -I`, please manually specify one via --master_addr"
)
logger.info(f"Using IP address of {args.master_addr} for node {first_host}")
if args.autotuning != "":
run_autotuning(args, active_resources)
return
if args.num_nodes > 0:
updated_active_resources = collections.OrderedDict()
for count, hostname in enumerate(active_resources.keys()):
if args.num_nodes == count:
break
updated_active_resources[hostname] = active_resources[hostname]
active_resources = updated_active_resources
if args.num_gpus > 0:
updated_active_resources = collections.OrderedDict()
for hostname in active_resources.keys():
updated_active_resources[hostname] = list(range(args.num_gpus))
active_resources = updated_active_resources
if args.elastic_training:
assert not args.no_local_rank, "--no_local_rank argument is not supported in Elastic training"
if args.no_ssh:
assert (0 <= args.node_rank <
len(active_resources)), "Launching training without ssh, but --node_rank is not set correctly."
# encode world info as base64 to make it easier to pass via command line
world_info_base64 = encode_world_info(active_resources)
multi_node_exec = (args.force_multi or len(active_resources) > 1) and not args.no_ssh
if not multi_node_exec:
deepspeed_launch = [
sys.executable, "-u", "-m", "deepspeed.launcher.launch", f"--world_info={world_info_base64}",
f"--master_addr={args.master_addr}", f"--master_port={args.master_port}"
]
if args.no_ssh:
deepspeed_launch.append(f"--node_rank={args.node_rank}")
if args.no_python:
deepspeed_launch.append("--no_python")
if args.module:
deepspeed_launch.append("--module")
if args.no_local_rank:
deepspeed_launch.append("--no_local_rank")
if args.save_pid:
deepspeed_launch += ["--save_pid", f"{os.getpid()}"]
if args.enable_each_rank_log:
deepspeed_launch.append(f"--enable_each_rank_log={args.enable_each_rank_log}")
if args.elastic_training:
deepspeed_launch.append("--enable_elastic_training")
deepspeed_launch.append(f"--max_elastic_nodes={args.max_elastic_nodes}")
deepspeed_launch.append(f"--min_elastic_nodes={args.min_elastic_nodes}")
if args.bind_cores_to_rank:
deepspeed_launch.append("--bind_cores_to_rank")
if args.bind_core_list is not None:
deepspeed_launch.append(f"--bind_core_list={args.bind_core_list}")
cmd = deepspeed_launch + [args.user_script] + args.user_args
else:
args.launcher = args.launcher.lower()
if args.launcher == PDSH_LAUNCHER:
runner = PDSHRunner(args, world_info_base64)
elif args.launcher == OPENMPI_LAUNCHER:
runner = OpenMPIRunner(args, world_info_base64, resource_pool)
elif args.launcher == MPICH_LAUNCHER:
runner = MPICHRunner(args, world_info_base64, resource_pool)
elif args.launcher == IMPI_LAUNCHER:
runner = IMPIRunner(args, world_info_base64, resource_pool)
elif args.launcher == MVAPICH_LAUNCHER:
runner = MVAPICHRunner(args, world_info_base64, resource_pool)
elif args.launcher == SLURM_LAUNCHER:
runner = SlurmRunner(args, world_info_base64, resource_pool)
else:
raise NotImplementedError(f"Unknown launcher {args.launcher}")
if not runner.backend_exists():
raise RuntimeError(f"launcher '{args.launcher}' not installed.")
curr_path = os.path.abspath('.')
if 'PYTHONPATH' in env:
env['PYTHONPATH'] = curr_path + ":" + env['PYTHONPATH']
else:
env['PYTHONPATH'] = curr_path
excluded_vars = []
for exclude_key, var_list in EXCLUDE_ENVS.items():
if exclude_key in env.keys():
# key exists in launcher env -> var list should be used
excluded_vars += var_list
# load envs from accelerator
exports = EXPORT_ENVS + get_accelerator().export_envs()
for var in env.keys():
if any([var.startswith(name) for name in exports]):
if not any([var == name for name in excluded_vars]):
runner.add_export(var, env[var])
for environ_path in DEEPSPEED_ENVIRONMENT_PATHS:
environ_file = os.path.join(environ_path, DEEPSPEED_ENVIRONMENT_NAME)
if os.path.isfile(environ_file):
logger.info(f"deepspeed_env file = {environ_file}")
with open(environ_file, 'r') as fd:
for var in fd.readlines():
key, val = var.split('=', maxsplit=1)
runner.add_export(key, val)
if args.launcher == PDSH_LAUNCHER:
cmd, kill_cmd, env = runner.get_cmd(env, active_resources)
else:
cmd = runner.get_cmd(env, active_resources)
logger.info(f"cmd = {' '.join(cmd)}")
result = subprocess.Popen(cmd, env=env)
def sigkill_handler(signum, frame):
result.send_signal(signal.SIGINT)
time.sleep(0.1)
result.send_signal(signal.SIGTERM)
result_kill = subprocess.Popen(kill_cmd, env=env)
result_kill.wait()
time.sleep(1)
sys.exit(1)
if args.launcher == PDSH_LAUNCHER and multi_node_exec:
signal.signal(signal.SIGINT, sigkill_handler)
signal.signal(signal.SIGTERM, sigkill_handler)
result.wait()
# In case of failure must propagate the error-condition back to the caller (usually shell). The
# actual error and traceback should have been printed in the subprocess, so in order to avoid
# unnecessary noise we just quietly exit here with the same code as the subprocess
if result.returncode > 0:
sys.exit(result.returncode)
if __name__ == "__main__":
main()